Mister Exam

Derivative of y=sin4x+cos5x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(4*x) + cos(5*x)
sin(4x)+cos(5x)\sin{\left(4 x \right)} + \cos{\left(5 x \right)}
d                      
--(sin(4*x) + cos(5*x))
dx                     
ddx(sin(4x)+cos(5x))\frac{d}{d x} \left(\sin{\left(4 x \right)} + \cos{\left(5 x \right)}\right)
Detail solution
  1. Differentiate sin(4x)+cos(5x)\sin{\left(4 x \right)} + \cos{\left(5 x \right)} term by term:

    1. Let u=4xu = 4 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 44

      The result of the chain rule is:

      4cos(4x)4 \cos{\left(4 x \right)}

    4. Let u=5xu = 5 x.

    5. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    6. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 55

      The result of the chain rule is:

      5sin(5x)- 5 \sin{\left(5 x \right)}

    The result is: 5sin(5x)+4cos(4x)- 5 \sin{\left(5 x \right)} + 4 \cos{\left(4 x \right)}


The answer is:

5sin(5x)+4cos(4x)- 5 \sin{\left(5 x \right)} + 4 \cos{\left(4 x \right)}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
-5*sin(5*x) + 4*cos(4*x)
5sin(5x)+4cos(4x)- 5 \sin{\left(5 x \right)} + 4 \cos{\left(4 x \right)}
The second derivative [src]
-(16*sin(4*x) + 25*cos(5*x))
(16sin(4x)+25cos(5x))- (16 \sin{\left(4 x \right)} + 25 \cos{\left(5 x \right)})
The third derivative [src]
-64*cos(4*x) + 125*sin(5*x)
125sin(5x)64cos(4x)125 \sin{\left(5 x \right)} - 64 \cos{\left(4 x \right)}
The graph
Derivative of y=sin4x+cos5x