Mister Exam

Derivative of 3sin2x*cosx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
3*sin(2*x)*cos(x)
3sin(2x)cos(x)3 \sin{\left(2 x \right)} \cos{\left(x \right)}
d                    
--(3*sin(2*x)*cos(x))
dx                   
ddx3sin(2x)cos(x)\frac{d}{d x} 3 \sin{\left(2 x \right)} \cos{\left(x \right)}
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=cos(x)f{\left(x \right)} = \cos{\left(x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      g(x)=sin(2x)g{\left(x \right)} = \sin{\left(2 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=2xu = 2 x.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        The result of the chain rule is:

        2cos(2x)2 \cos{\left(2 x \right)}

      The result is: sin(x)sin(2x)+2cos(x)cos(2x)- \sin{\left(x \right)} \sin{\left(2 x \right)} + 2 \cos{\left(x \right)} \cos{\left(2 x \right)}

    So, the result is: 3sin(x)sin(2x)+6cos(x)cos(2x)- 3 \sin{\left(x \right)} \sin{\left(2 x \right)} + 6 \cos{\left(x \right)} \cos{\left(2 x \right)}

  2. Now simplify:

    3cos(x)2+9cos(3x)2\frac{3 \cos{\left(x \right)}}{2} + \frac{9 \cos{\left(3 x \right)}}{2}


The answer is:

3cos(x)2+9cos(3x)2\frac{3 \cos{\left(x \right)}}{2} + \frac{9 \cos{\left(3 x \right)}}{2}

The graph
02468-8-6-4-2-1010-1010
The first derivative [src]
-3*sin(x)*sin(2*x) + 6*cos(x)*cos(2*x)
3sin(x)sin(2x)+6cos(x)cos(2x)- 3 \sin{\left(x \right)} \sin{\left(2 x \right)} + 6 \cos{\left(x \right)} \cos{\left(2 x \right)}
The second derivative [src]
-3*(4*cos(2*x)*sin(x) + 5*cos(x)*sin(2*x))
3(4sin(x)cos(2x)+5sin(2x)cos(x))- 3 \cdot \left(4 \sin{\left(x \right)} \cos{\left(2 x \right)} + 5 \sin{\left(2 x \right)} \cos{\left(x \right)}\right)
The third derivative [src]
3*(-14*cos(x)*cos(2*x) + 13*sin(x)*sin(2*x))
3(13sin(x)sin(2x)14cos(x)cos(2x))3 \cdot \left(13 \sin{\left(x \right)} \sin{\left(2 x \right)} - 14 \cos{\left(x \right)} \cos{\left(2 x \right)}\right)
The graph
Derivative of 3sin2x*cosx