Mister Exam

Other calculators

Derivative of ax*e^(-ax^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         2
     -a*x 
a*x*E     
eax2axe^{- a x^{2}} a x
(a*x)*E^((-a)*x^2)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=axf{\left(x \right)} = a x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: xx goes to 11

      So, the result is: aa

    g(x)=eax2g{\left(x \right)} = e^{- a x^{2}}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=ax2u = - a x^{2}.

    2. The derivative of eue^{u} is itself.

    3. Then, apply the chain rule. Multiply by xax2\frac{\partial}{\partial x} - a x^{2}:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        So, the result is: 2ax- 2 a x

      The result of the chain rule is:

      2axeax2- 2 a x e^{- a x^{2}}

    The result is: 2a2x2eax2+aeax2- 2 a^{2} x^{2} e^{- a x^{2}} + a e^{- a x^{2}}

  2. Now simplify:

    a(2ax2+1)eax2a \left(- 2 a x^{2} + 1\right) e^{- a x^{2}}


The answer is:

a(2ax2+1)eax2a \left(- 2 a x^{2} + 1\right) e^{- a x^{2}}

The first derivative [src]
       2                2
   -a*x       2  2  -a*x 
a*e      - 2*a *x *e     
2a2x2eax2+aeax2- 2 a^{2} x^{2} e^{- a x^{2}} + a e^{- a x^{2}}
The second derivative [src]
                          2
     2 /          2\  -a*x 
2*x*a *\-3 + 2*a*x /*e     
2a2x(2ax23)eax22 a^{2} x \left(2 a x^{2} - 3\right) e^{- a x^{2}}
The third derivative [src]
                                               2
   2 /          2        2 /          2\\  -a*x 
2*a *\-3 + 6*a*x  - 2*a*x *\-3 + 2*a*x //*e     
2a2(2ax2(2ax23)+6ax23)eax22 a^{2} \left(- 2 a x^{2} \left(2 a x^{2} - 3\right) + 6 a x^{2} - 3\right) e^{- a x^{2}}