Mister Exam

Other calculators


y=sin(2x^3)

Derivative of y=sin(2x^3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   3\
sin\2*x /
$$\sin{\left(2 x^{3} \right)}$$
d /   /   3\\
--\sin\2*x //
dx           
$$\frac{d}{d x} \sin{\left(2 x^{3} \right)}$$
Detail solution
  1. Let .

  2. The derivative of sine is cosine:

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
   2    /   3\
6*x *cos\2*x /
$$6 x^{2} \cos{\left(2 x^{3} \right)}$$
The second derivative [src]
     /     3    /   3\      /   3\\
12*x*\- 3*x *sin\2*x / + cos\2*x //
$$12 x \left(- 3 x^{3} \sin{\left(2 x^{3} \right)} + \cos{\left(2 x^{3} \right)}\right)$$
The third derivative [src]
   /      3    /   3\       6    /   3\      /   3\\
12*\- 18*x *sin\2*x / - 18*x *cos\2*x / + cos\2*x //
$$12 \left(- 18 x^{6} \cos{\left(2 x^{3} \right)} - 18 x^{3} \sin{\left(2 x^{3} \right)} + \cos{\left(2 x^{3} \right)}\right)$$
The graph
Derivative of y=sin(2x^3)