Mister Exam

Derivative of y=sin(2x^3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   3\
sin\2*x /
sin(2x3)\sin{\left(2 x^{3} \right)}
d /   /   3\\
--\sin\2*x //
dx           
ddxsin(2x3)\frac{d}{d x} \sin{\left(2 x^{3} \right)}
Detail solution
  1. Let u=2x3u = 2 x^{3}.

  2. The derivative of sine is cosine:

    ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

  3. Then, apply the chain rule. Multiply by ddx2x3\frac{d}{d x} 2 x^{3}:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

      So, the result is: 6x26 x^{2}

    The result of the chain rule is:

    6x2cos(2x3)6 x^{2} \cos{\left(2 x^{3} \right)}


The answer is:

6x2cos(2x3)6 x^{2} \cos{\left(2 x^{3} \right)}

The graph
02468-8-6-4-2-1010-10001000
The first derivative [src]
   2    /   3\
6*x *cos\2*x /
6x2cos(2x3)6 x^{2} \cos{\left(2 x^{3} \right)}
The second derivative [src]
     /     3    /   3\      /   3\\
12*x*\- 3*x *sin\2*x / + cos\2*x //
12x(3x3sin(2x3)+cos(2x3))12 x \left(- 3 x^{3} \sin{\left(2 x^{3} \right)} + \cos{\left(2 x^{3} \right)}\right)
The third derivative [src]
   /      3    /   3\       6    /   3\      /   3\\
12*\- 18*x *sin\2*x / - 18*x *cos\2*x / + cos\2*x //
12(18x6cos(2x3)18x3sin(2x3)+cos(2x3))12 \left(- 18 x^{6} \cos{\left(2 x^{3} \right)} - 18 x^{3} \sin{\left(2 x^{3} \right)} + \cos{\left(2 x^{3} \right)}\right)
The graph
Derivative of y=sin(2x^3)