Mister Exam

Derivative of sqrt(x-2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  _______
\/ x - 2 
x2\sqrt{x - 2}
d /  _______\
--\\/ x - 2 /
dx           
ddxx2\frac{d}{d x} \sqrt{x - 2}
Detail solution
  1. Let u=x2u = x - 2.

  2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

  3. Then, apply the chain rule. Multiply by ddx(x2)\frac{d}{d x} \left(x - 2\right):

    1. Differentiate x2x - 2 term by term:

      1. Apply the power rule: xx goes to 11

      2. The derivative of the constant (1)2\left(-1\right) 2 is zero.

      The result is: 11

    The result of the chain rule is:

    12x2\frac{1}{2 \sqrt{x - 2}}

  4. Now simplify:

    12x2\frac{1}{2 \sqrt{x - 2}}


The answer is:

12x2\frac{1}{2 \sqrt{x - 2}}

The graph
02468-8-6-4-2-10100.05.0
The first derivative [src]
     1     
-----------
    _______
2*\/ x - 2 
12x2\frac{1}{2 \sqrt{x - 2}}
The second derivative [src]
     -1      
-------------
          3/2
4*(-2 + x)   
14(x2)32- \frac{1}{4 \left(x - 2\right)^{\frac{3}{2}}}
The third derivative [src]
      3      
-------------
          5/2
8*(-2 + x)   
38(x2)52\frac{3}{8 \left(x - 2\right)^{\frac{5}{2}}}
The graph
Derivative of sqrt(x-2)