Mister Exam

Other calculators

Derivative of y=log^3√√12x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3/  _____\  
log \\/ 412 /*x
xlog(412)3x \log{\left(\sqrt{412} \right)}^{3}
d /   3/  _____\  \
--\log \\/ 412 /*x/
dx                 
ddxxlog(412)3\frac{d}{d x} x \log{\left(\sqrt{412} \right)}^{3}
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the power rule: xx goes to 11

    So, the result is: log(412)3\log{\left(\sqrt{412} \right)}^{3}

  2. Now simplify:

    (log(2)+log(103)2)3\left(\log{\left(2 \right)} + \frac{\log{\left(103 \right)}}{2}\right)^{3}


The answer is:

(log(2)+log(103)2)3\left(\log{\left(2 \right)} + \frac{\log{\left(103 \right)}}{2}\right)^{3}

The first derivative [src]
   3/  _____\
log \\/ 412 /
log(412)3\log{\left(\sqrt{412} \right)}^{3}
The second derivative [src]
0
00
The third derivative [src]
0
00