Detail solution
-
Let .
-
The derivative of is .
-
Then, apply the chain rule. Multiply by :
-
Let .
-
The derivative of is .
-
Then, apply the chain rule. Multiply by :
-
Let .
-
The derivative of is .
-
Then, apply the chain rule. Multiply by :
-
Rewrite the function to be differentiated:
-
Apply the quotient rule, which is:
and .
To find :
-
The derivative of sine is cosine:
To find :
-
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result of the chain rule is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
The first derivative
[src]
2
1 + tan (x)
-----------------------------------
log(log(tan(x)))*log(tan(x))*tan(x)
$$\frac{\tan^{2}{\left(x \right)} + 1}{\log{\left(\log{\left(\tan{\left(x \right)} \right)} \right)} \log{\left(\tan{\left(x \right)} \right)} \tan{\left(x \right)}}$$
The second derivative
[src]
/ 2 2 2 \
/ 2 \ | 1 + tan (x) 1 + tan (x) 1 + tan (x) |
\1 + tan (x)/*|2 - ----------- - ------------------- - ------------------------------------|
| 2 2 2 |
\ tan (x) log(tan(x))*tan (x) log(log(tan(x)))*log(tan(x))*tan (x)/
--------------------------------------------------------------------------------------------
log(log(tan(x)))*log(tan(x))
$$\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \left(2 - \frac{\tan^{2}{\left(x \right)} + 1}{\tan^{2}{\left(x \right)}} - \frac{\tan^{2}{\left(x \right)} + 1}{\log{\left(\tan{\left(x \right)} \right)} \tan^{2}{\left(x \right)}} - \frac{\tan^{2}{\left(x \right)} + 1}{\log{\left(\log{\left(\tan{\left(x \right)} \right)} \right)} \log{\left(\tan{\left(x \right)} \right)} \tan^{2}{\left(x \right)}}\right)}{\log{\left(\log{\left(\tan{\left(x \right)} \right)} \right)} \log{\left(\tan{\left(x \right)} \right)}}$$
The third derivative
[src]
/ 2 2 2 2 2 2 \
| / 2 \ / 2 \ / 2 \ / 2 \ / 2 \ / 2 \ / 2 \ / 2 \ / 2 \ |
/ 2 \ | 4*\1 + tan (x)/ 2*\1 + tan (x)/ 6*\1 + tan (x)/ 2*\1 + tan (x)/ 3*\1 + tan (x)/ 6*\1 + tan (x)/ 2*\1 + tan (x)/ 3*\1 + tan (x)/ 3*\1 + tan (x)/ |
\1 + tan (x)/*|4*tan(x) - --------------- + ---------------- - ------------------ + -------------------- + ------------------- - ----------------------------------- + -------------------------------------- + ------------------------------------ + -------------------------------------|
| tan(x) 3 log(tan(x))*tan(x) 2 3 3 log(log(tan(x)))*log(tan(x))*tan(x) 2 2 3 3 2 3 |
\ tan (x) log (tan(x))*tan (x) log(tan(x))*tan (x) log (log(tan(x)))*log (tan(x))*tan (x) log(log(tan(x)))*log(tan(x))*tan (x) log(log(tan(x)))*log (tan(x))*tan (x)/
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
log(log(tan(x)))*log(tan(x))
$$\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \left(4 \tan{\left(x \right)} - \frac{4 \left(\tan^{2}{\left(x \right)} + 1\right)}{\tan{\left(x \right)}} + \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\tan^{3}{\left(x \right)}} - \frac{6 \left(\tan^{2}{\left(x \right)} + 1\right)}{\log{\left(\tan{\left(x \right)} \right)} \tan{\left(x \right)}} + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\log{\left(\tan{\left(x \right)} \right)} \tan^{3}{\left(x \right)}} - \frac{6 \left(\tan^{2}{\left(x \right)} + 1\right)}{\log{\left(\log{\left(\tan{\left(x \right)} \right)} \right)} \log{\left(\tan{\left(x \right)} \right)} \tan{\left(x \right)}} + \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\log{\left(\tan{\left(x \right)} \right)}^{2} \tan^{3}{\left(x \right)}} + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\log{\left(\log{\left(\tan{\left(x \right)} \right)} \right)} \log{\left(\tan{\left(x \right)} \right)} \tan^{3}{\left(x \right)}} + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\log{\left(\log{\left(\tan{\left(x \right)} \right)} \right)} \log{\left(\tan{\left(x \right)} \right)}^{2} \tan^{3}{\left(x \right)}} + \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\log{\left(\log{\left(\tan{\left(x \right)} \right)} \right)}^{2} \log{\left(\tan{\left(x \right)} \right)}^{2} \tan^{3}{\left(x \right)}}\right)}{\log{\left(\log{\left(\tan{\left(x \right)} \right)} \right)} \log{\left(\tan{\left(x \right)} \right)}}$$