Mister Exam

Derivative of y=log(log(logtanx))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(log(log(tan(x))))
$$\log{\left(\log{\left(\log{\left(\tan{\left(x \right)} \right)} \right)} \right)}$$
d                        
--(log(log(log(tan(x)))))
dx                       
$$\frac{d}{d x} \log{\left(\log{\left(\log{\left(\tan{\left(x \right)} \right)} \right)} \right)}$$
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. The derivative of sine is cosine:

          To find :

          1. The derivative of cosine is negative sine:

          Now plug in to the quotient rule:

        The result of the chain rule is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
                   2               
            1 + tan (x)            
-----------------------------------
log(log(tan(x)))*log(tan(x))*tan(x)
$$\frac{\tan^{2}{\left(x \right)} + 1}{\log{\left(\log{\left(\tan{\left(x \right)} \right)} \right)} \log{\left(\tan{\left(x \right)} \right)} \tan{\left(x \right)}}$$
The second derivative [src]
              /           2                 2                             2                \
/       2   \ |    1 + tan (x)       1 + tan (x)                   1 + tan (x)             |
\1 + tan (x)/*|2 - ----------- - ------------------- - ------------------------------------|
              |         2                       2                                      2   |
              \      tan (x)     log(tan(x))*tan (x)   log(log(tan(x)))*log(tan(x))*tan (x)/
--------------------------------------------------------------------------------------------
                                log(log(tan(x)))*log(tan(x))                                
$$\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \left(2 - \frac{\tan^{2}{\left(x \right)} + 1}{\tan^{2}{\left(x \right)}} - \frac{\tan^{2}{\left(x \right)} + 1}{\log{\left(\tan{\left(x \right)} \right)} \tan^{2}{\left(x \right)}} - \frac{\tan^{2}{\left(x \right)} + 1}{\log{\left(\log{\left(\tan{\left(x \right)} \right)} \right)} \log{\left(\tan{\left(x \right)} \right)} \tan^{2}{\left(x \right)}}\right)}{\log{\left(\log{\left(\tan{\left(x \right)} \right)} \right)} \log{\left(\tan{\left(x \right)} \right)}}$$
The third derivative [src]
              /                                            2                                         2                      2                                                                    2                                       2                                       2          \
              |             /       2   \     /       2   \       /       2   \         /       2   \          /       2   \                 /       2   \                          /       2   \                           /       2   \                           /       2   \           |
/       2   \ |           4*\1 + tan (x)/   2*\1 + tan (x)/     6*\1 + tan (x)/       2*\1 + tan (x)/        3*\1 + tan (x)/               6*\1 + tan (x)/                        2*\1 + tan (x)/                         3*\1 + tan (x)/                         3*\1 + tan (x)/           |
\1 + tan (x)/*|4*tan(x) - --------------- + ---------------- - ------------------ + -------------------- + ------------------- - ----------------------------------- + -------------------------------------- + ------------------------------------ + -------------------------------------|
              |                tan(x)              3           log(tan(x))*tan(x)      2            3                     3      log(log(tan(x)))*log(tan(x))*tan(x)      2                 2            3                                      3                          2            3   |
              \                                 tan (x)                             log (tan(x))*tan (x)   log(tan(x))*tan (x)                                         log (log(tan(x)))*log (tan(x))*tan (x)   log(log(tan(x)))*log(tan(x))*tan (x)   log(log(tan(x)))*log (tan(x))*tan (x)/
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                 log(log(tan(x)))*log(tan(x))                                                                                                                                
$$\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \left(4 \tan{\left(x \right)} - \frac{4 \left(\tan^{2}{\left(x \right)} + 1\right)}{\tan{\left(x \right)}} + \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\tan^{3}{\left(x \right)}} - \frac{6 \left(\tan^{2}{\left(x \right)} + 1\right)}{\log{\left(\tan{\left(x \right)} \right)} \tan{\left(x \right)}} + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\log{\left(\tan{\left(x \right)} \right)} \tan^{3}{\left(x \right)}} - \frac{6 \left(\tan^{2}{\left(x \right)} + 1\right)}{\log{\left(\log{\left(\tan{\left(x \right)} \right)} \right)} \log{\left(\tan{\left(x \right)} \right)} \tan{\left(x \right)}} + \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\log{\left(\tan{\left(x \right)} \right)}^{2} \tan^{3}{\left(x \right)}} + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\log{\left(\log{\left(\tan{\left(x \right)} \right)} \right)} \log{\left(\tan{\left(x \right)} \right)} \tan^{3}{\left(x \right)}} + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\log{\left(\log{\left(\tan{\left(x \right)} \right)} \right)} \log{\left(\tan{\left(x \right)} \right)}^{2} \tan^{3}{\left(x \right)}} + \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\log{\left(\log{\left(\tan{\left(x \right)} \right)} \right)}^{2} \log{\left(\tan{\left(x \right)} \right)}^{2} \tan^{3}{\left(x \right)}}\right)}{\log{\left(\log{\left(\tan{\left(x \right)} \right)} \right)} \log{\left(\tan{\left(x \right)} \right)}}$$
The graph
Derivative of y=log(log(logtanx))