Mister Exam

Other calculators


y=(log3(4x+5))/2ctgsqrtx

Derivative of y=(log3(4x+5))/2ctgsqrtx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
/log(4*x + 5)\           
|------------|           
\   log(3)   /    /  ___\
--------------*cot\\/ x /
      2                  
$$\frac{\frac{1}{\log{\left(3 \right)}} \log{\left(4 x + 5 \right)}}{2} \cot{\left(\sqrt{x} \right)}$$
((log(4*x + 5)/log(3))/2)*cot(sqrt(x))
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the product rule:

      ; to find :

      1. There are multiple ways to do this derivative.

        Method #1

        1. Rewrite the function to be differentiated:

        2. Let .

        3. Apply the power rule: goes to

        4. Then, apply the chain rule. Multiply by :

          1. Rewrite the function to be differentiated:

          2. Apply the quotient rule, which is:

            and .

            To find :

            1. Let .

            2. The derivative of sine is cosine:

            3. Then, apply the chain rule. Multiply by :

              1. Apply the power rule: goes to

              The result of the chain rule is:

            To find :

            1. Let .

            2. The derivative of cosine is negative sine:

            3. Then, apply the chain rule. Multiply by :

              1. Apply the power rule: goes to

              The result of the chain rule is:

            Now plug in to the quotient rule:

          The result of the chain rule is:

        Method #2

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. Let .

          2. The derivative of cosine is negative sine:

          3. Then, apply the chain rule. Multiply by :

            1. Apply the power rule: goes to

            The result of the chain rule is:

          To find :

          1. Let .

          2. The derivative of sine is cosine:

          3. Then, apply the chain rule. Multiply by :

            1. Apply the power rule: goes to

            The result of the chain rule is:

          Now plug in to the quotient rule:

      ; to find :

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          2. The derivative of the constant is zero.

          The result is:

        The result of the chain rule is:

      The result is:

    To find :

    1. The derivative of the constant is zero.

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       /  ___\     /        2/  ___\\             
  2*cot\\/ x /     \-1 - cot \\/ x //*log(4*x + 5)
---------------- + -------------------------------
(4*x + 5)*log(3)                ___               
                            4*\/ x *log(3)        
$$\frac{2 \cot{\left(\sqrt{x} \right)}}{\left(4 x + 5\right) \log{\left(3 \right)}} + \frac{\left(- \cot^{2}{\left(\sqrt{x} \right)} - 1\right) \log{\left(4 x + 5 \right)}}{4 \sqrt{x} \log{\left(3 \right)}}$$
The second derivative [src]
                                                         /            /  ___\\             
                                       /       2/  ___\\ | 1     2*cot\\/ x /|             
                                       \1 + cot \\/ x //*|---- + ------------|*log(5 + 4*x)
       /  ___\     /       2/  ___\\                     | 3/2        x      |             
  8*cot\\/ x /   2*\1 + cot \\/ x //                     \x                  /             
- ------------ - ------------------- + ----------------------------------------------------
            2        ___                                        8                          
   (5 + 4*x)       \/ x *(5 + 4*x)                                                         
-------------------------------------------------------------------------------------------
                                           log(3)                                          
$$\frac{\frac{\left(\frac{2 \cot{\left(\sqrt{x} \right)}}{x} + \frac{1}{x^{\frac{3}{2}}}\right) \left(\cot^{2}{\left(\sqrt{x} \right)} + 1\right) \log{\left(4 x + 5 \right)}}{8} - \frac{8 \cot{\left(\sqrt{x} \right)}}{\left(4 x + 5\right)^{2}} - \frac{2 \left(\cot^{2}{\left(\sqrt{x} \right)} + 1\right)}{\sqrt{x} \left(4 x + 5\right)}}{\log{\left(3 \right)}}$$
The third derivative [src]
                                                         /         /       2/  ___\\        2/  ___\        /  ___\\                                    /            /  ___\\
                                       /       2/  ___\\ | 3     2*\1 + cot \\/ x //   4*cot \\/ x /   6*cot\\/ x /|                  /       2/  ___\\ | 1     2*cot\\/ x /|
                                       \1 + cot \\/ x //*|---- + ------------------- + ------------- + ------------|*log(5 + 4*x)   3*\1 + cot \\/ x //*|---- + ------------|
      /  ___\      /       2/  ___\\                     | 5/2            3/2                3/2             2     |                                    | 3/2        x      |
64*cot\\/ x /   12*\1 + cot \\/ x //                     \x              x                  x               x      /                                    \x                  /
------------- + -------------------- - ------------------------------------------------------------------------------------------ + -----------------------------------------
           3        ___          2                                                 16                                                              2*(5 + 4*x)               
  (5 + 4*x)       \/ x *(5 + 4*x)                                                                                                                                            
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                    log(3)                                                                                   
$$\frac{- \frac{\left(\cot^{2}{\left(\sqrt{x} \right)} + 1\right) \left(\frac{6 \cot{\left(\sqrt{x} \right)}}{x^{2}} + \frac{2 \left(\cot^{2}{\left(\sqrt{x} \right)} + 1\right)}{x^{\frac{3}{2}}} + \frac{4 \cot^{2}{\left(\sqrt{x} \right)}}{x^{\frac{3}{2}}} + \frac{3}{x^{\frac{5}{2}}}\right) \log{\left(4 x + 5 \right)}}{16} + \frac{3 \left(\frac{2 \cot{\left(\sqrt{x} \right)}}{x} + \frac{1}{x^{\frac{3}{2}}}\right) \left(\cot^{2}{\left(\sqrt{x} \right)} + 1\right)}{2 \left(4 x + 5\right)} + \frac{64 \cot{\left(\sqrt{x} \right)}}{\left(4 x + 5\right)^{3}} + \frac{12 \left(\cot^{2}{\left(\sqrt{x} \right)} + 1\right)}{\sqrt{x} \left(4 x + 5\right)^{2}}}{\log{\left(3 \right)}}$$
The graph
Derivative of y=(log3(4x+5))/2ctgsqrtx