x x*2
x*2^x
Apply the product rule:
f(x)=xf{\left(x \right)} = xf(x)=x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}dxdf(x):
Apply the power rule: xxx goes to 111
g(x)=2xg{\left(x \right)} = 2^{x}g(x)=2x; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}dxdg(x):
ddx2x=2xlog(2)\frac{d}{d x} 2^{x} = 2^{x} \log{\left(2 \right)}dxd2x=2xlog(2)
The result is: 2xxlog(2)+2x2^{x} x \log{\left(2 \right)} + 2^{x}2xxlog(2)+2x
Now simplify:
The answer is:
x x 2 + x*2 *log(2)
x 2 *(2 + x*log(2))*log(2)
x 2 2 *log (2)*(3 + x*log(2))