Mister Exam

Derivative of y=log2xcosx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(2*x)*cos(x)
$$\log{\left(2 x \right)} \cos{\left(x \right)}$$
d                  
--(log(2*x)*cos(x))
dx                 
$$\frac{d}{d x} \log{\left(2 x \right)} \cos{\left(x \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    ; to find :

    1. The derivative of cosine is negative sine:

    The result is:


The answer is:

The graph
The first derivative [src]
cos(x)                  
------ - log(2*x)*sin(x)
  x                     
$$- \log{\left(2 x \right)} \sin{\left(x \right)} + \frac{\cos{\left(x \right)}}{x}$$
The second derivative [src]
 /cos(x)                     2*sin(x)\
-|------ + cos(x)*log(2*x) + --------|
 |   2                          x    |
 \  x                                /
$$- (\log{\left(2 x \right)} \cos{\left(x \right)} + \frac{2 \sin{\left(x \right)}}{x} + \frac{\cos{\left(x \right)}}{x^{2}})$$
The third derivative [src]
                  3*cos(x)   2*cos(x)   3*sin(x)
log(2*x)*sin(x) - -------- + -------- + --------
                     x           3          2   
                                x          x    
$$\log{\left(2 x \right)} \sin{\left(x \right)} - \frac{3 \cos{\left(x \right)}}{x} + \frac{3 \sin{\left(x \right)}}{x^{2}} + \frac{2 \cos{\left(x \right)}}{x^{3}}$$
The graph
Derivative of y=log2xcosx