Mister Exam

Derivative of (log2(x))^cosx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        cos(x)
/log(x)\      
|------|      
\log(2)/      
$$\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}}\right)^{\cos{\left(x \right)}}$$
(log(x)/log(2))^cos(x)
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is


The answer is:

The graph
The first derivative [src]
        cos(x)                                  
/log(x)\       /     /log(x)\           cos(x) \
|------|      *|- log|------|*sin(x) + --------|
\log(2)/       \     \log(2)/          x*log(x)/
$$\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}}\right)^{\cos{\left(x \right)}} \left(- \log{\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}} \right)} \sin{\left(x \right)} + \frac{\cos{\left(x \right)}}{x \log{\left(x \right)}}\right)$$
The second derivative [src]
        cos(x) /                               2                                                         \
/log(x)\       |/   /log(x)\           cos(x) \              /log(x)\     cos(x)      cos(x)     2*sin(x)|
|------|      *||log|------|*sin(x) - --------|  - cos(x)*log|------| - --------- - ---------- - --------|
\log(2)/       |\   \log(2)/          x*log(x)/              \log(2)/    2           2    2      x*log(x)|
               \                                                        x *log(x)   x *log (x)           /
$$\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}}\right)^{\cos{\left(x \right)}} \left(\left(\log{\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}} \right)} \sin{\left(x \right)} - \frac{\cos{\left(x \right)}}{x \log{\left(x \right)}}\right)^{2} - \log{\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}} \right)} \cos{\left(x \right)} - \frac{2 \sin{\left(x \right)}}{x \log{\left(x \right)}} - \frac{\cos{\left(x \right)}}{x^{2} \log{\left(x \right)}} - \frac{\cos{\left(x \right)}}{x^{2} \log{\left(x \right)}^{2}}\right)$$
The third derivative [src]
        cos(x) /                                 3                                                                                                                                                                                            \
/log(x)\       |  /   /log(x)\           cos(x) \       /log(x)\            /   /log(x)\           cos(x) \ /          /log(x)\     cos(x)      cos(x)     2*sin(x)\   3*cos(x)    2*cos(x)    2*cos(x)     3*cos(x)     3*sin(x)    3*sin(x) |
|------|      *|- |log|------|*sin(x) - --------|  + log|------|*sin(x) + 3*|log|------|*sin(x) - --------|*|cos(x)*log|------| + --------- + ---------- + --------| - -------- + --------- + ---------- + ---------- + --------- + ----------|
\log(2)/       |  \   \log(2)/          x*log(x)/       \log(2)/            \   \log(2)/          x*log(x)/ |          \log(2)/    2           2    2      x*log(x)|   x*log(x)    3           3    3       3    2       2           2    2   |
               \                                                                                            \                     x *log(x)   x *log (x)           /              x *log(x)   x *log (x)   x *log (x)   x *log(x)   x *log (x)/
$$\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}}\right)^{\cos{\left(x \right)}} \left(- \left(\log{\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}} \right)} \sin{\left(x \right)} - \frac{\cos{\left(x \right)}}{x \log{\left(x \right)}}\right)^{3} + 3 \left(\log{\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}} \right)} \sin{\left(x \right)} - \frac{\cos{\left(x \right)}}{x \log{\left(x \right)}}\right) \left(\log{\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}} \right)} \cos{\left(x \right)} + \frac{2 \sin{\left(x \right)}}{x \log{\left(x \right)}} + \frac{\cos{\left(x \right)}}{x^{2} \log{\left(x \right)}} + \frac{\cos{\left(x \right)}}{x^{2} \log{\left(x \right)}^{2}}\right) + \log{\left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}} \right)} \sin{\left(x \right)} - \frac{3 \cos{\left(x \right)}}{x \log{\left(x \right)}} + \frac{3 \sin{\left(x \right)}}{x^{2} \log{\left(x \right)}} + \frac{3 \sin{\left(x \right)}}{x^{2} \log{\left(x \right)}^{2}} + \frac{2 \cos{\left(x \right)}}{x^{3} \log{\left(x \right)}} + \frac{3 \cos{\left(x \right)}}{x^{3} \log{\left(x \right)}^{2}} + \frac{2 \cos{\left(x \right)}}{x^{3} \log{\left(x \right)}^{3}}\right)$$