Mister Exam

Derivative of y=lntg^2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2        
log (tan(x))
$$\log{\left(\tan{\left(x \right)} \right)}^{2}$$
log(tan(x))^2
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. The derivative of sine is cosine:

        To find :

        1. The derivative of cosine is negative sine:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
  /       2   \            
2*\1 + tan (x)/*log(tan(x))
---------------------------
           tan(x)          
$$\frac{2 \left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} \right)}}{\tan{\left(x \right)}}$$
The second derivative [src]
                /                       2      /       2   \            \
  /       2   \ |                1 + tan (x)   \1 + tan (x)/*log(tan(x))|
2*\1 + tan (x)/*|2*log(tan(x)) + ----------- - -------------------------|
                |                     2                    2            |
                \                  tan (x)              tan (x)         /
$$2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(- \frac{\left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} \right)}}{\tan^{2}{\left(x \right)}} + \frac{\tan^{2}{\left(x \right)} + 1}{\tan^{2}{\left(x \right)}} + 2 \log{\left(\tan{\left(x \right)} \right)}\right)$$
The third derivative [src]
                /                 2                                                                                         2            \
                |    /       2   \                             /       2   \     /       2   \                 /       2   \             |
  /       2   \ |  3*\1 + tan (x)/                           6*\1 + tan (x)/   4*\1 + tan (x)/*log(tan(x))   2*\1 + tan (x)/ *log(tan(x))|
2*\1 + tan (x)/*|- ---------------- + 4*log(tan(x))*tan(x) + --------------- - --------------------------- + ----------------------------|
                |         3                                       tan(x)                  tan(x)                          3              |
                \      tan (x)                                                                                         tan (x)           /
$$2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(\frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} \log{\left(\tan{\left(x \right)} \right)}}{\tan^{3}{\left(x \right)}} - \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\tan^{3}{\left(x \right)}} - \frac{4 \left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(\tan{\left(x \right)} \right)}}{\tan{\left(x \right)}} + \frac{6 \left(\tan^{2}{\left(x \right)} + 1\right)}{\tan{\left(x \right)}} + 4 \log{\left(\tan{\left(x \right)} \right)} \tan{\left(x \right)}\right)$$
The graph
Derivative of y=lntg^2x