2 log (tan(x))
log(tan(x))^2
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
/ 2 \ 2*\1 + tan (x)/*log(tan(x)) --------------------------- tan(x)
/ 2 / 2 \ \ / 2 \ | 1 + tan (x) \1 + tan (x)/*log(tan(x))| 2*\1 + tan (x)/*|2*log(tan(x)) + ----------- - -------------------------| | 2 2 | \ tan (x) tan (x) /
/ 2 2 \ | / 2 \ / 2 \ / 2 \ / 2 \ | / 2 \ | 3*\1 + tan (x)/ 6*\1 + tan (x)/ 4*\1 + tan (x)/*log(tan(x)) 2*\1 + tan (x)/ *log(tan(x))| 2*\1 + tan (x)/*|- ---------------- + 4*log(tan(x))*tan(x) + --------------- - --------------------------- + ----------------------------| | 3 tan(x) tan(x) 3 | \ tan (x) tan (x) /