Mister Exam

Other calculators


ln*tg^2(x/6)

Derivative of ln*tg^2(x/6)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          2/x\
log(x)*tan |-|
           \6/
$$\log{\left(x \right)} \tan^{2}{\left(\frac{x}{6} \right)}$$
d /          2/x\\
--|log(x)*tan |-||
dx\           \6//
$$\frac{d}{d x} \log{\left(x \right)} \tan^{2}{\left(\frac{x}{6} \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. The derivative of is .

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   2/x\   /       2/x\\              
tan |-|   |    tan |-||              
    \6/   |1       \6/|           /x\
------- + |- + -------|*log(x)*tan|-|
   x      \3      3   /           \6/
$$\left(\frac{\tan^{2}{\left(\frac{x}{6} \right)}}{3} + \frac{1}{3}\right) \log{\left(x \right)} \tan{\left(\frac{x}{6} \right)} + \frac{\tan^{2}{\left(\frac{x}{6} \right)}}{x}$$
The second derivative [src]
     2/x\   /       2/x\\ /         2/x\\            /       2/x\\    /x\
  tan |-|   |1 + tan |-||*|1 + 3*tan |-||*log(x)   2*|1 + tan |-||*tan|-|
      \6/   \        \6// \          \6//            \        \6//    \6/
- ------- + ------------------------------------ + ----------------------
      2                      18                             3*x          
     x                                                                   
$$\frac{\left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right) \left(3 \tan^{2}{\left(\frac{x}{6} \right)} + 1\right) \log{\left(x \right)}}{18} + \frac{2 \left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right) \tan{\left(\frac{x}{6} \right)}}{3 x} - \frac{\tan^{2}{\left(\frac{x}{6} \right)}}{x^{2}}$$
The third derivative [src]
     2/x\   /       2/x\\    /x\   /       2/x\\ /         2/x\\   /       2/x\\ /         2/x\\           /x\
2*tan |-|   |1 + tan |-||*tan|-|   |1 + tan |-||*|1 + 3*tan |-||   |1 + tan |-||*|2 + 3*tan |-||*log(x)*tan|-|
      \6/   \        \6//    \6/   \        \6// \          \6//   \        \6// \          \6//           \6/
--------- - -------------------- + ----------------------------- + -------------------------------------------
     3                2                         6*x                                     27                    
    x                x                                                                                        
$$\frac{\left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right) \left(3 \tan^{2}{\left(\frac{x}{6} \right)} + 2\right) \log{\left(x \right)} \tan{\left(\frac{x}{6} \right)}}{27} + \frac{\left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right) \left(3 \tan^{2}{\left(\frac{x}{6} \right)} + 1\right)}{6 x} - \frac{\left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right) \tan{\left(\frac{x}{6} \right)}}{x^{2}} + \frac{2 \tan^{2}{\left(\frac{x}{6} \right)}}{x^{3}}$$
The graph
Derivative of ln*tg^2(x/6)