Mister Exam

Other calculators


ln*tg^2(x/6)

Derivative of ln*tg^2(x/6)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          2/x\
log(x)*tan |-|
           \6/
log(x)tan2(x6)\log{\left(x \right)} \tan^{2}{\left(\frac{x}{6} \right)}
d /          2/x\\
--|log(x)*tan |-||
dx\           \6//
ddxlog(x)tan2(x6)\frac{d}{d x} \log{\left(x \right)} \tan^{2}{\left(\frac{x}{6} \right)}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=log(x)f{\left(x \right)} = \log{\left(x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

    g(x)=tan2(x6)g{\left(x \right)} = \tan^{2}{\left(\frac{x}{6} \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=tan(x6)u = \tan{\left(\frac{x}{6} \right)}.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddxtan(x6)\frac{d}{d x} \tan{\left(\frac{x}{6} \right)}:

      1. Rewrite the function to be differentiated:

        tan(x6)=sin(x6)cos(x6)\tan{\left(\frac{x}{6} \right)} = \frac{\sin{\left(\frac{x}{6} \right)}}{\cos{\left(\frac{x}{6} \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=sin(x6)f{\left(x \right)} = \sin{\left(\frac{x}{6} \right)} and g(x)=cos(x6)g{\left(x \right)} = \cos{\left(\frac{x}{6} \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Let u=x6u = \frac{x}{6}.

        2. The derivative of sine is cosine:

          ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddxx6\frac{d}{d x} \frac{x}{6}:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 16\frac{1}{6}

          The result of the chain rule is:

          cos(x6)6\frac{\cos{\left(\frac{x}{6} \right)}}{6}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Let u=x6u = \frac{x}{6}.

        2. The derivative of cosine is negative sine:

          dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddxx6\frac{d}{d x} \frac{x}{6}:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 16\frac{1}{6}

          The result of the chain rule is:

          sin(x6)6- \frac{\sin{\left(\frac{x}{6} \right)}}{6}

        Now plug in to the quotient rule:

        sin2(x6)6+cos2(x6)6cos2(x6)\frac{\frac{\sin^{2}{\left(\frac{x}{6} \right)}}{6} + \frac{\cos^{2}{\left(\frac{x}{6} \right)}}{6}}{\cos^{2}{\left(\frac{x}{6} \right)}}

      The result of the chain rule is:

      2(sin2(x6)6+cos2(x6)6)tan(x6)cos2(x6)\frac{2 \left(\frac{\sin^{2}{\left(\frac{x}{6} \right)}}{6} + \frac{\cos^{2}{\left(\frac{x}{6} \right)}}{6}\right) \tan{\left(\frac{x}{6} \right)}}{\cos^{2}{\left(\frac{x}{6} \right)}}

    The result is: 2(sin2(x6)6+cos2(x6)6)log(x)tan(x6)cos2(x6)+tan2(x6)x\frac{2 \left(\frac{\sin^{2}{\left(\frac{x}{6} \right)}}{6} + \frac{\cos^{2}{\left(\frac{x}{6} \right)}}{6}\right) \log{\left(x \right)} \tan{\left(\frac{x}{6} \right)}}{\cos^{2}{\left(\frac{x}{6} \right)}} + \frac{\tan^{2}{\left(\frac{x}{6} \right)}}{x}

  2. Now simplify:

    (xlog(x)+3sin(x3)2)tan(x6)3xcos2(x6)\frac{\left(x \log{\left(x \right)} + \frac{3 \sin{\left(\frac{x}{3} \right)}}{2}\right) \tan{\left(\frac{x}{6} \right)}}{3 x \cos^{2}{\left(\frac{x}{6} \right)}}


The answer is:

(xlog(x)+3sin(x3)2)tan(x6)3xcos2(x6)\frac{\left(x \log{\left(x \right)} + \frac{3 \sin{\left(\frac{x}{3} \right)}}{2}\right) \tan{\left(\frac{x}{6} \right)}}{3 x \cos^{2}{\left(\frac{x}{6} \right)}}

The graph
02468-8-6-4-2-1010-500000010000000
The first derivative [src]
   2/x\   /       2/x\\              
tan |-|   |    tan |-||              
    \6/   |1       \6/|           /x\
------- + |- + -------|*log(x)*tan|-|
   x      \3      3   /           \6/
(tan2(x6)3+13)log(x)tan(x6)+tan2(x6)x\left(\frac{\tan^{2}{\left(\frac{x}{6} \right)}}{3} + \frac{1}{3}\right) \log{\left(x \right)} \tan{\left(\frac{x}{6} \right)} + \frac{\tan^{2}{\left(\frac{x}{6} \right)}}{x}
The second derivative [src]
     2/x\   /       2/x\\ /         2/x\\            /       2/x\\    /x\
  tan |-|   |1 + tan |-||*|1 + 3*tan |-||*log(x)   2*|1 + tan |-||*tan|-|
      \6/   \        \6// \          \6//            \        \6//    \6/
- ------- + ------------------------------------ + ----------------------
      2                      18                             3*x          
     x                                                                   
(tan2(x6)+1)(3tan2(x6)+1)log(x)18+2(tan2(x6)+1)tan(x6)3xtan2(x6)x2\frac{\left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right) \left(3 \tan^{2}{\left(\frac{x}{6} \right)} + 1\right) \log{\left(x \right)}}{18} + \frac{2 \left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right) \tan{\left(\frac{x}{6} \right)}}{3 x} - \frac{\tan^{2}{\left(\frac{x}{6} \right)}}{x^{2}}
The third derivative [src]
     2/x\   /       2/x\\    /x\   /       2/x\\ /         2/x\\   /       2/x\\ /         2/x\\           /x\
2*tan |-|   |1 + tan |-||*tan|-|   |1 + tan |-||*|1 + 3*tan |-||   |1 + tan |-||*|2 + 3*tan |-||*log(x)*tan|-|
      \6/   \        \6//    \6/   \        \6// \          \6//   \        \6// \          \6//           \6/
--------- - -------------------- + ----------------------------- + -------------------------------------------
     3                2                         6*x                                     27                    
    x                x                                                                                        
(tan2(x6)+1)(3tan2(x6)+2)log(x)tan(x6)27+(tan2(x6)+1)(3tan2(x6)+1)6x(tan2(x6)+1)tan(x6)x2+2tan2(x6)x3\frac{\left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right) \left(3 \tan^{2}{\left(\frac{x}{6} \right)} + 2\right) \log{\left(x \right)} \tan{\left(\frac{x}{6} \right)}}{27} + \frac{\left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right) \left(3 \tan^{2}{\left(\frac{x}{6} \right)} + 1\right)}{6 x} - \frac{\left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right) \tan{\left(\frac{x}{6} \right)}}{x^{2}} + \frac{2 \tan^{2}{\left(\frac{x}{6} \right)}}{x^{3}}
The graph
Derivative of ln*tg^2(x/6)