Mister Exam

Other calculators


lntg^2*(x/6)

Derivative of lntg^2*(x/6)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2/   /x\\
log |tan|-||
    \   \6//
$$\log{\left(\tan{\left(\frac{x}{6} \right)} \right)}^{2}$$
d /   2/   /x\\\
--|log |tan|-|||
dx\    \   \6///
$$\frac{d}{d x} \log{\left(\tan{\left(\frac{x}{6} \right)} \right)}^{2}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
  /       2/x\\            
  |    tan |-||            
  |1       \6/|    /   /x\\
2*|- + -------|*log|tan|-||
  \6      6   /    \   \6//
---------------------------
              /x\          
           tan|-|          
              \6/          
$$\frac{2 \left(\frac{\tan^{2}{\left(\frac{x}{6} \right)}}{6} + \frac{1}{6}\right) \log{\left(\tan{\left(\frac{x}{6} \right)} \right)}}{\tan{\left(\frac{x}{6} \right)}}$$
The second derivative [src]
              /                       2/x\   /       2/x\\    /   /x\\\
              |                1 + tan |-|   |1 + tan |-||*log|tan|-|||
/       2/x\\ |     /   /x\\           \6/   \        \6//    \   \6//|
|1 + tan |-||*|2*log|tan|-|| + ----------- - -------------------------|
\        \6// |     \   \6//        2/x\                 2/x\         |
              |                  tan |-|              tan |-|         |
              \                      \6/                  \6/         /
-----------------------------------------------------------------------
                                   18                                  
$$\frac{\left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right) \left(- \frac{\left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right) \log{\left(\tan{\left(\frac{x}{6} \right)} \right)}}{\tan^{2}{\left(\frac{x}{6} \right)}} + \frac{\tan^{2}{\left(\frac{x}{6} \right)} + 1}{\tan^{2}{\left(\frac{x}{6} \right)}} + 2 \log{\left(\tan{\left(\frac{x}{6} \right)} \right)}\right)}{18}$$
The third derivative [src]
              /                 2                                                                                         2            \
              |    /       2/x\\                             /       2/x\\     /       2/x\\    /   /x\\     /       2/x\\     /   /x\\|
              |  3*|1 + tan |-||                           6*|1 + tan |-||   4*|1 + tan |-||*log|tan|-||   2*|1 + tan |-|| *log|tan|-|||
/       2/x\\ |    \        \6//         /   /x\\    /x\     \        \6//     \        \6//    \   \6//     \        \6//     \   \6//|
|1 + tan |-||*|- ---------------- + 4*log|tan|-||*tan|-| + --------------- - --------------------------- + ----------------------------|
\        \6// |         3/x\             \   \6//    \6/           /x\                     /x\                          3/x\           |
              |      tan |-|                                    tan|-|                  tan|-|                       tan |-|           |
              \          \6/                                       \6/                     \6/                           \6/           /
----------------------------------------------------------------------------------------------------------------------------------------
                                                                  108                                                                   
$$\frac{\left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right) \left(\frac{2 \left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right)^{2} \log{\left(\tan{\left(\frac{x}{6} \right)} \right)}}{\tan^{3}{\left(\frac{x}{6} \right)}} - \frac{3 \left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right)^{2}}{\tan^{3}{\left(\frac{x}{6} \right)}} - \frac{4 \left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right) \log{\left(\tan{\left(\frac{x}{6} \right)} \right)}}{\tan{\left(\frac{x}{6} \right)}} + \frac{6 \left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right)}{\tan{\left(\frac{x}{6} \right)}} + 4 \log{\left(\tan{\left(\frac{x}{6} \right)} \right)} \tan{\left(\frac{x}{6} \right)}\right)}{108}$$
The graph
Derivative of lntg^2*(x/6)