Mister Exam

Other calculators


lntg^2*(x/6)

Derivative of lntg^2*(x/6)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2/   /x\\
log |tan|-||
    \   \6//
log(tan(x6))2\log{\left(\tan{\left(\frac{x}{6} \right)} \right)}^{2}
d /   2/   /x\\\
--|log |tan|-|||
dx\    \   \6///
ddxlog(tan(x6))2\frac{d}{d x} \log{\left(\tan{\left(\frac{x}{6} \right)} \right)}^{2}
Detail solution
  1. Let u=log(tan(x6))u = \log{\left(\tan{\left(\frac{x}{6} \right)} \right)}.

  2. Apply the power rule: u2u^{2} goes to 2u2 u

  3. Then, apply the chain rule. Multiply by ddxlog(tan(x6))\frac{d}{d x} \log{\left(\tan{\left(\frac{x}{6} \right)} \right)}:

    1. Let u=tan(x6)u = \tan{\left(\frac{x}{6} \right)}.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddxtan(x6)\frac{d}{d x} \tan{\left(\frac{x}{6} \right)}:

      1. Rewrite the function to be differentiated:

        tan(x6)=sin(x6)cos(x6)\tan{\left(\frac{x}{6} \right)} = \frac{\sin{\left(\frac{x}{6} \right)}}{\cos{\left(\frac{x}{6} \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=sin(x6)f{\left(x \right)} = \sin{\left(\frac{x}{6} \right)} and g(x)=cos(x6)g{\left(x \right)} = \cos{\left(\frac{x}{6} \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Let u=x6u = \frac{x}{6}.

        2. The derivative of sine is cosine:

          ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddxx6\frac{d}{d x} \frac{x}{6}:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 16\frac{1}{6}

          The result of the chain rule is:

          cos(x6)6\frac{\cos{\left(\frac{x}{6} \right)}}{6}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Let u=x6u = \frac{x}{6}.

        2. The derivative of cosine is negative sine:

          dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddxx6\frac{d}{d x} \frac{x}{6}:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 16\frac{1}{6}

          The result of the chain rule is:

          sin(x6)6- \frac{\sin{\left(\frac{x}{6} \right)}}{6}

        Now plug in to the quotient rule:

        sin2(x6)6+cos2(x6)6cos2(x6)\frac{\frac{\sin^{2}{\left(\frac{x}{6} \right)}}{6} + \frac{\cos^{2}{\left(\frac{x}{6} \right)}}{6}}{\cos^{2}{\left(\frac{x}{6} \right)}}

      The result of the chain rule is:

      sin2(x6)6+cos2(x6)6cos2(x6)tan(x6)\frac{\frac{\sin^{2}{\left(\frac{x}{6} \right)}}{6} + \frac{\cos^{2}{\left(\frac{x}{6} \right)}}{6}}{\cos^{2}{\left(\frac{x}{6} \right)} \tan{\left(\frac{x}{6} \right)}}

    The result of the chain rule is:

    2(sin2(x6)6+cos2(x6)6)log(tan(x6))cos2(x6)tan(x6)\frac{2 \left(\frac{\sin^{2}{\left(\frac{x}{6} \right)}}{6} + \frac{\cos^{2}{\left(\frac{x}{6} \right)}}{6}\right) \log{\left(\tan{\left(\frac{x}{6} \right)} \right)}}{\cos^{2}{\left(\frac{x}{6} \right)} \tan{\left(\frac{x}{6} \right)}}

  4. Now simplify:

    2log(tan(x6))3sin(x3)\frac{2 \log{\left(\tan{\left(\frac{x}{6} \right)} \right)}}{3 \sin{\left(\frac{x}{3} \right)}}


The answer is:

2log(tan(x6))3sin(x3)\frac{2 \log{\left(\tan{\left(\frac{x}{6} \right)} \right)}}{3 \sin{\left(\frac{x}{3} \right)}}

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
  /       2/x\\            
  |    tan |-||            
  |1       \6/|    /   /x\\
2*|- + -------|*log|tan|-||
  \6      6   /    \   \6//
---------------------------
              /x\          
           tan|-|          
              \6/          
2(tan2(x6)6+16)log(tan(x6))tan(x6)\frac{2 \left(\frac{\tan^{2}{\left(\frac{x}{6} \right)}}{6} + \frac{1}{6}\right) \log{\left(\tan{\left(\frac{x}{6} \right)} \right)}}{\tan{\left(\frac{x}{6} \right)}}
The second derivative [src]
              /                       2/x\   /       2/x\\    /   /x\\\
              |                1 + tan |-|   |1 + tan |-||*log|tan|-|||
/       2/x\\ |     /   /x\\           \6/   \        \6//    \   \6//|
|1 + tan |-||*|2*log|tan|-|| + ----------- - -------------------------|
\        \6// |     \   \6//        2/x\                 2/x\         |
              |                  tan |-|              tan |-|         |
              \                      \6/                  \6/         /
-----------------------------------------------------------------------
                                   18                                  
(tan2(x6)+1)((tan2(x6)+1)log(tan(x6))tan2(x6)+tan2(x6)+1tan2(x6)+2log(tan(x6)))18\frac{\left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right) \left(- \frac{\left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right) \log{\left(\tan{\left(\frac{x}{6} \right)} \right)}}{\tan^{2}{\left(\frac{x}{6} \right)}} + \frac{\tan^{2}{\left(\frac{x}{6} \right)} + 1}{\tan^{2}{\left(\frac{x}{6} \right)}} + 2 \log{\left(\tan{\left(\frac{x}{6} \right)} \right)}\right)}{18}
The third derivative [src]
              /                 2                                                                                         2            \
              |    /       2/x\\                             /       2/x\\     /       2/x\\    /   /x\\     /       2/x\\     /   /x\\|
              |  3*|1 + tan |-||                           6*|1 + tan |-||   4*|1 + tan |-||*log|tan|-||   2*|1 + tan |-|| *log|tan|-|||
/       2/x\\ |    \        \6//         /   /x\\    /x\     \        \6//     \        \6//    \   \6//     \        \6//     \   \6//|
|1 + tan |-||*|- ---------------- + 4*log|tan|-||*tan|-| + --------------- - --------------------------- + ----------------------------|
\        \6// |         3/x\             \   \6//    \6/           /x\                     /x\                          3/x\           |
              |      tan |-|                                    tan|-|                  tan|-|                       tan |-|           |
              \          \6/                                       \6/                     \6/                           \6/           /
----------------------------------------------------------------------------------------------------------------------------------------
                                                                  108                                                                   
(tan2(x6)+1)(2(tan2(x6)+1)2log(tan(x6))tan3(x6)3(tan2(x6)+1)2tan3(x6)4(tan2(x6)+1)log(tan(x6))tan(x6)+6(tan2(x6)+1)tan(x6)+4log(tan(x6))tan(x6))108\frac{\left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right) \left(\frac{2 \left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right)^{2} \log{\left(\tan{\left(\frac{x}{6} \right)} \right)}}{\tan^{3}{\left(\frac{x}{6} \right)}} - \frac{3 \left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right)^{2}}{\tan^{3}{\left(\frac{x}{6} \right)}} - \frac{4 \left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right) \log{\left(\tan{\left(\frac{x}{6} \right)} \right)}}{\tan{\left(\frac{x}{6} \right)}} + \frac{6 \left(\tan^{2}{\left(\frac{x}{6} \right)} + 1\right)}{\tan{\left(\frac{x}{6} \right)}} + 4 \log{\left(\tan{\left(\frac{x}{6} \right)} \right)} \tan{\left(\frac{x}{6} \right)}\right)}{108}
The graph
Derivative of lntg^2*(x/6)