Mister Exam

Derivative of y=ln(e^x+2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / x      \
log\e  + 2*x/
$$\log{\left(2 x + e^{x} \right)}$$
d /   / x      \\
--\log\e  + 2*x//
dx               
$$\frac{d}{d x} \log{\left(2 x + e^{x} \right)}$$
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of is itself.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
      x 
 2 + e  
--------
 x      
e  + 2*x
$$\frac{e^{x} + 2}{2 x + e^{x}}$$
The second derivative [src]
          2     
  /     x\      
  \2 + e /     x
- --------- + e 
          x     
   2*x + e      
----------------
           x    
    2*x + e     
$$\frac{e^{x} - \frac{\left(e^{x} + 2\right)^{2}}{2 x + e^{x}}}{2 x + e^{x}}$$
The third derivative [src]
          3                     
  /     x\      /     x\  x     
2*\2 + e /    3*\2 + e /*e     x
----------- - ------------- + e 
          2             x       
/       x\       2*x + e        
\2*x + e /                      
--------------------------------
                   x            
            2*x + e             
$$\frac{e^{x} - \frac{3 \left(e^{x} + 2\right) e^{x}}{2 x + e^{x}} + \frac{2 \left(e^{x} + 2\right)^{3}}{\left(2 x + e^{x}\right)^{2}}}{2 x + e^{x}}$$
The graph
Derivative of y=ln(e^x+2x)