25 log (cos(x))
log(cos(x))^25
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
The derivative of cosine is negative sine:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
24
-25*log (cos(x))*sin(x)
------------------------
cos(x)
/ 2 2 \
23 | 24*sin (x) sin (x)*log(cos(x))|
25*log (cos(x))*|-log(cos(x)) + ---------- - -------------------|
| 2 2 |
\ cos (x) cos (x) /
/ 2 2 2 2 \
22 | 2 276*sin (x) log (cos(x))*sin (x) 36*sin (x)*log(cos(x))|
50*log (cos(x))*|- log (cos(x)) + 36*log(cos(x)) - ----------- - -------------------- + ----------------------|*sin(x)
| 2 2 2 |
\ cos (x) cos (x) cos (x) /
-----------------------------------------------------------------------------------------------------------------------
cos(x)