Mister Exam

Derivative of y=lncos²5x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   25        
log  (cos(x))
$$\log{\left(\cos{\left(x \right)} \right)}^{25}$$
log(cos(x))^25
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of cosine is negative sine:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
       24               
-25*log  (cos(x))*sin(x)
------------------------
         cos(x)         
$$- \frac{25 \log{\left(\cos{\left(x \right)} \right)}^{24} \sin{\left(x \right)}}{\cos{\left(x \right)}}$$
The second derivative [src]
                 /                     2         2               \
      23         |               24*sin (x)   sin (x)*log(cos(x))|
25*log  (cos(x))*|-log(cos(x)) + ---------- - -------------------|
                 |                   2                 2         |
                 \                cos (x)           cos (x)      /
$$25 \left(- \frac{\log{\left(\cos{\left(x \right)} \right)} \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} - \log{\left(\cos{\left(x \right)} \right)} + \frac{24 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}\right) \log{\left(\cos{\left(x \right)} \right)}^{23}$$
The third derivative [src]
                 /                                         2         2            2            2               \       
      22         |     2                            276*sin (x)   log (cos(x))*sin (x)   36*sin (x)*log(cos(x))|       
50*log  (cos(x))*|- log (cos(x)) + 36*log(cos(x)) - ----------- - -------------------- + ----------------------|*sin(x)
                 |                                       2                 2                       2           |       
                 \                                    cos (x)           cos (x)                 cos (x)        /       
-----------------------------------------------------------------------------------------------------------------------
                                                         cos(x)                                                        
$$\frac{50 \left(- \frac{\log{\left(\cos{\left(x \right)} \right)}^{2} \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} - \log{\left(\cos{\left(x \right)} \right)}^{2} + \frac{36 \log{\left(\cos{\left(x \right)} \right)} \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 36 \log{\left(\cos{\left(x \right)} \right)} - \frac{276 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}\right) \log{\left(\cos{\left(x \right)} \right)}^{22} \sin{\left(x \right)}}{\cos{\left(x \right)}}$$
The graph
Derivative of y=lncos²5x