Mister Exam

Derivative of y=lncos²5x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   25        
log  (cos(x))
log(cos(x))25\log{\left(\cos{\left(x \right)} \right)}^{25}
log(cos(x))^25
Detail solution
  1. Let u=log(cos(x))u = \log{\left(\cos{\left(x \right)} \right)}.

  2. Apply the power rule: u25u^{25} goes to 25u2425 u^{24}

  3. Then, apply the chain rule. Multiply by ddxlog(cos(x))\frac{d}{d x} \log{\left(\cos{\left(x \right)} \right)}:

    1. Let u=cos(x)u = \cos{\left(x \right)}.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddxcos(x)\frac{d}{d x} \cos{\left(x \right)}:

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      The result of the chain rule is:

      sin(x)cos(x)- \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

    The result of the chain rule is:

    25log(cos(x))24sin(x)cos(x)- \frac{25 \log{\left(\cos{\left(x \right)} \right)}^{24} \sin{\left(x \right)}}{\cos{\left(x \right)}}

  4. Now simplify:

    25log(cos(x))24tan(x)- 25 \log{\left(\cos{\left(x \right)} \right)}^{24} \tan{\left(x \right)}


The answer is:

25log(cos(x))24tan(x)- 25 \log{\left(\cos{\left(x \right)} \right)}^{24} \tan{\left(x \right)}

The graph
02468-8-6-4-2-1010-50000000000000005000000000000000
The first derivative [src]
       24               
-25*log  (cos(x))*sin(x)
------------------------
         cos(x)         
25log(cos(x))24sin(x)cos(x)- \frac{25 \log{\left(\cos{\left(x \right)} \right)}^{24} \sin{\left(x \right)}}{\cos{\left(x \right)}}
The second derivative [src]
                 /                     2         2               \
      23         |               24*sin (x)   sin (x)*log(cos(x))|
25*log  (cos(x))*|-log(cos(x)) + ---------- - -------------------|
                 |                   2                 2         |
                 \                cos (x)           cos (x)      /
25(log(cos(x))sin2(x)cos2(x)log(cos(x))+24sin2(x)cos2(x))log(cos(x))2325 \left(- \frac{\log{\left(\cos{\left(x \right)} \right)} \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} - \log{\left(\cos{\left(x \right)} \right)} + \frac{24 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}\right) \log{\left(\cos{\left(x \right)} \right)}^{23}
The third derivative [src]
                 /                                         2         2            2            2               \       
      22         |     2                            276*sin (x)   log (cos(x))*sin (x)   36*sin (x)*log(cos(x))|       
50*log  (cos(x))*|- log (cos(x)) + 36*log(cos(x)) - ----------- - -------------------- + ----------------------|*sin(x)
                 |                                       2                 2                       2           |       
                 \                                    cos (x)           cos (x)                 cos (x)        /       
-----------------------------------------------------------------------------------------------------------------------
                                                         cos(x)                                                        
50(log(cos(x))2sin2(x)cos2(x)log(cos(x))2+36log(cos(x))sin2(x)cos2(x)+36log(cos(x))276sin2(x)cos2(x))log(cos(x))22sin(x)cos(x)\frac{50 \left(- \frac{\log{\left(\cos{\left(x \right)} \right)}^{2} \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} - \log{\left(\cos{\left(x \right)} \right)}^{2} + \frac{36 \log{\left(\cos{\left(x \right)} \right)} \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 36 \log{\left(\cos{\left(x \right)} \right)} - \frac{276 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}\right) \log{\left(\cos{\left(x \right)} \right)}^{22} \sin{\left(x \right)}}{\cos{\left(x \right)}}
The graph
Derivative of y=lncos²5x