Detail solution
-
Apply the product rule:
; to find :
-
The derivative of is .
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
25
cos (x) 24
-------- - 25*cos (x)*log(x)*sin(x)
x
$$- 25 \log{\left(x \right)} \sin{\left(x \right)} \cos^{24}{\left(x \right)} + \frac{\cos^{25}{\left(x \right)}}{x}$$
The second derivative
[src]
/ 2 \
23 | cos (x) / 2 2 \ 50*cos(x)*sin(x)|
cos (x)*|- ------- + 25*\- cos (x) + 24*sin (x)/*log(x) - ----------------|
| 2 x |
\ x /
$$\left(25 \left(24 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \log{\left(x \right)} - \frac{50 \sin{\left(x \right)} \cos{\left(x \right)}}{x} - \frac{\cos^{2}{\left(x \right)}}{x^{2}}\right) \cos^{23}{\left(x \right)}$$
The third derivative
[src]
/ 3 / 2 2 \ 2 \
22 |2*cos (x) / 2 2 \ 75*\- cos (x) + 24*sin (x)/*cos(x) 75*cos (x)*sin(x)|
cos (x)*|--------- - 25*\- 73*cos (x) + 552*sin (x)/*log(x)*sin(x) + ---------------------------------- + -----------------|
| 3 x 2 |
\ x x /
$$\left(- 25 \left(552 \sin^{2}{\left(x \right)} - 73 \cos^{2}{\left(x \right)}\right) \log{\left(x \right)} \sin{\left(x \right)} + \frac{75 \left(24 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \cos{\left(x \right)}}{x} + \frac{75 \sin{\left(x \right)} \cos^{2}{\left(x \right)}}{x^{2}} + \frac{2 \cos^{3}{\left(x \right)}}{x^{3}}\right) \cos^{22}{\left(x \right)}$$