25 log(x)*cos (x)
log(x)*cos(x)^25
Apply the product rule:
; to find :
The derivative of is .
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of cosine is negative sine:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
25 cos (x) 24 -------- - 25*cos (x)*log(x)*sin(x) x
/ 2 \
23 | cos (x) / 2 2 \ 50*cos(x)*sin(x)|
cos (x)*|- ------- + 25*\- cos (x) + 24*sin (x)/*log(x) - ----------------|
| 2 x |
\ x /
/ 3 / 2 2 \ 2 \
22 |2*cos (x) / 2 2 \ 75*\- cos (x) + 24*sin (x)/*cos(x) 75*cos (x)*sin(x)|
cos (x)*|--------- - 25*\- 73*cos (x) + 552*sin (x)/*log(x)*sin(x) + ---------------------------------- + -----------------|
| 3 x 2 |
\ x x /