Apply the product rule:
; to find :
The derivative of is .
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of cosine is negative sine:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
/ 2 \ 23 | cos (x) / 2 2 \ 50*cos(x)*sin(x)| cos (x)*|- ------- + 25*\- cos (x) + 24*sin (x)/*log(x) - ----------------| | 2 x | \ x /
/ 3 / 2 2 \ 2 \ 22 |2*cos (x) / 2 2 \ 75*\- cos (x) + 24*sin (x)/*cos(x) 75*cos (x)*sin(x)| cos (x)*|--------- - 25*\- 73*cos (x) + 552*sin (x)/*log(x)*sin(x) + ---------------------------------- + -----------------| | 3 x 2 | \ x x /