log(2*x) -------- sin(x)
d /log(2*x)\ --|--------| dx\ sin(x) /
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
To find :
The derivative of sine is cosine:
Now plug in to the quotient rule:
Now simplify:
The answer is:
1 cos(x)*log(2*x)
-------- - ---------------
x*sin(x) 2
sin (x)
/ 2 \
1 | 2*cos (x)| 2*cos(x)
- -- + |1 + ---------|*log(2*x) - --------
2 | 2 | x*sin(x)
x \ sin (x) /
------------------------------------------
sin(x)
/ 2 \ / 2 \
| 2*cos (x)| | 6*cos (x)|
3*|1 + ---------| |5 + ---------|*cos(x)*log(2*x)
| 2 | | 2 |
2 \ sin (x) / 3*cos(x) \ sin (x) /
-- + ----------------- + --------- - -------------------------------
3 x 2 sin(x)
x x *sin(x)
--------------------------------------------------------------------
sin(x)