Mister Exam

Derivative of y=(ln2x)/(sinx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(2*x)
--------
 sin(x) 
$$\frac{\log{\left(2 x \right)}}{\sin{\left(x \right)}}$$
d /log(2*x)\
--|--------|
dx\ sin(x) /
$$\frac{d}{d x} \frac{\log{\left(2 x \right)}}{\sin{\left(x \right)}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    To find :

    1. The derivative of sine is cosine:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   1       cos(x)*log(2*x)
-------- - ---------------
x*sin(x)          2       
               sin (x)    
$$- \frac{\log{\left(2 x \right)} \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \frac{1}{x \sin{\left(x \right)}}$$
The second derivative [src]
       /         2   \                    
  1    |    2*cos (x)|            2*cos(x)
- -- + |1 + ---------|*log(2*x) - --------
   2   |        2    |            x*sin(x)
  x    \     sin (x) /                    
------------------------------------------
                  sin(x)                  
$$\frac{\left(1 + \frac{2 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \log{\left(2 x \right)} - \frac{2 \cos{\left(x \right)}}{x \sin{\left(x \right)}} - \frac{1}{x^{2}}}{\sin{\left(x \right)}}$$
The third derivative [src]
       /         2   \               /         2   \                
       |    2*cos (x)|               |    6*cos (x)|                
     3*|1 + ---------|               |5 + ---------|*cos(x)*log(2*x)
       |        2    |               |        2    |                
2      \     sin (x) /    3*cos(x)   \     sin (x) /                
-- + ----------------- + --------- - -------------------------------
 3           x            2                       sin(x)            
x                        x *sin(x)                                  
--------------------------------------------------------------------
                               sin(x)                               
$$\frac{- \frac{\left(5 + \frac{6 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \log{\left(2 x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}} + \frac{3 \cdot \left(1 + \frac{2 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right)}{x} + \frac{3 \cos{\left(x \right)}}{x^{2} \sin{\left(x \right)}} + \frac{2}{x^{3}}}{\sin{\left(x \right)}}$$
The graph
Derivative of y=(ln2x)/(sinx)