/ 2*x \ log|------| | /1\| |sin|-|| \ \x//
log((2*x)/sin(1/x))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Apply the power rule: goes to
The result of the chain rule is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
/ /1\\
| 2*cos|-||
| 2 \x/| /1\
|------ + ---------|*sin|-|
| /1\ 2/1\| \x/
|sin|-| x*sin |-||
\ \x/ \x//
---------------------------
2*x
2/1\ / /1\ \
2*cos |-| | cos|-| |
\x/ | \x/ | /1\
1 + --------- |1 + --------|*cos|-|
2/1\ /1\ | /1\| \x/
sin |-| cos|-| | x*sin|-||
\x/ \x/ \ \x//
-1 + ------------- - -------- - ---------------------
2 /1\ /1\
x x*sin|-| x*sin|-|
\x/ \x/
-----------------------------------------------------
2
x
/1\ 2/1\ 3/1\ /1\ / 2/1\\ / 2/1\\ / /1\ \
cos|-| 6*cos |-| 6*cos |-| 5*cos|-| | 2*cos |-|| | 2*cos |-|| | cos|-| |
\x/ \x/ \x/ \x/ | \x/| | \x/| /1\ | \x/ | /1\
1 + -------- 3 + --------- - --------- - -------- 2*|1 + ---------| 2*|1 + ---------|*cos|-| 4*|1 + --------|*cos|-|
/1\ 2/1\ 3/1\ /1\ | 2/1\ | /1\ | 2/1\ | \x/ | /1\| \x/
x*sin|-| sin |-| x*sin |-| x*sin|-| | sin |-| | 2*cos|-| | sin |-| | | x*sin|-||
\x/ \x/ \x/ \x/ \ \x/ / \x/ \ \x/ / \ \x//
2 - ------------ - ------------------------------------ - ----------------- + -------- - ------------------------ + -----------------------
2 2 2 /1\ 3 /1\ /1\
x x x x*sin|-| x *sin|-| x*sin|-|
\x/ \x/ \x/
-------------------------------------------------------------------------------------------------------------------------------------------
3
x