2 log (x) ------- sin(x)
log(x)^2/sin(x)
Apply the quotient rule, which is:
and .
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of is .
The result of the chain rule is:
To find :
The derivative of sine is cosine:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2
log (x)*cos(x) 2*log(x)
- -------------- + --------
2 x*sin(x)
sin (x)
/ 2 \
2 | 2*cos (x)| 2*(-1 + log(x)) 4*cos(x)*log(x)
log (x)*|1 + ---------| - --------------- - ---------------
| 2 | 2 x*sin(x)
\ sin (x) / x
-----------------------------------------------------------
sin(x)
/ 2 \ / 2 \
| 2*cos (x)| 2 | 6*cos (x)|
6*|1 + ---------|*log(x) log (x)*|5 + ---------|*cos(x)
| 2 | | 2 |
2*(-3 + 2*log(x)) \ sin (x) / \ sin (x) / 6*(-1 + log(x))*cos(x)
----------------- + ------------------------ - ------------------------------ + ----------------------
3 x sin(x) 2
x x *sin(x)
------------------------------------------------------------------------------------------------------
sin(x)