Mister Exam

Other calculators


y=4sin^4*(x/4)

Derivative of y=4sin^4*(x/4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     4/x\
4*sin |-|
      \4/
$$4 \sin^{4}{\left(\frac{x}{4} \right)}$$
d /     4/x\\
--|4*sin |-||
dx\      \4//
$$\frac{d}{d x} 4 \sin^{4}{\left(\frac{x}{4} \right)}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     3/x\    /x\
4*sin |-|*cos|-|
      \4/    \4/
$$4 \sin^{3}{\left(\frac{x}{4} \right)} \cos{\left(\frac{x}{4} \right)}$$
The second derivative [src]
    2/x\ /   2/x\        2/x\\
-sin |-|*|sin |-| - 3*cos |-||
     \4/ \    \4/         \4//
$$- \left(\sin^{2}{\left(\frac{x}{4} \right)} - 3 \cos^{2}{\left(\frac{x}{4} \right)}\right) \sin^{2}{\left(\frac{x}{4} \right)}$$
The third derivative [src]
 /       2/x\        2/x\\    /x\    /x\ 
-|- 3*cos |-| + 5*sin |-||*cos|-|*sin|-| 
 \        \4/         \4//    \4/    \4/ 
-----------------------------------------
                    2                    
$$- \frac{\left(5 \sin^{2}{\left(\frac{x}{4} \right)} - 3 \cos^{2}{\left(\frac{x}{4} \right)}\right) \sin{\left(\frac{x}{4} \right)} \cos{\left(\frac{x}{4} \right)}}{2}$$
The graph
Derivative of y=4sin^4*(x/4)