Mister Exam

Derivative of y=csc(2x²)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   2\
csc\2*x /
$$\csc{\left(2 x^{2} \right)}$$
d /   /   2\\
--\csc\2*x //
dx           
$$\frac{d}{d x} \csc{\left(2 x^{2} \right)}$$
Detail solution
  1. Rewrite the function to be differentiated:

  2. Let .

  3. Apply the power rule: goes to

  4. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
        /   2\    /   2\
-4*x*cot\2*x /*csc\2*x /
$$- 4 x \cot{\left(2 x^{2} \right)} \csc{\left(2 x^{2} \right)}$$
The second derivative [src]
  /     /   2\      2    2/   2\      2 /       2/   2\\\    /   2\
4*\- cot\2*x / + 4*x *cot \2*x / + 4*x *\1 + cot \2*x ///*csc\2*x /
$$4 \cdot \left(4 x^{2} \cot^{2}{\left(2 x^{2} \right)} + 4 x^{2} \left(\cot^{2}{\left(2 x^{2} \right)} + 1\right) - \cot{\left(2 x^{2} \right)}\right) \csc{\left(2 x^{2} \right)}$$
The third derivative [src]
     /         2/   2\      2    3/   2\       2 /       2/   2\\    /   2\\    /   2\
16*x*\3 + 6*cot \2*x / - 4*x *cot \2*x / - 20*x *\1 + cot \2*x //*cot\2*x //*csc\2*x /
$$16 x \left(- 4 x^{2} \cot^{3}{\left(2 x^{2} \right)} - 20 x^{2} \left(\cot^{2}{\left(2 x^{2} \right)} + 1\right) \cot{\left(2 x^{2} \right)} + 6 \cot^{2}{\left(2 x^{2} \right)} + 3\right) \csc{\left(2 x^{2} \right)}$$
The graph
Derivative of y=csc(2x²)