Mister Exam

Derivative of y=csc(2x²)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   2\
csc\2*x /
csc(2x2)\csc{\left(2 x^{2} \right)}
d /   /   2\\
--\csc\2*x //
dx           
ddxcsc(2x2)\frac{d}{d x} \csc{\left(2 x^{2} \right)}
Detail solution
  1. Rewrite the function to be differentiated:

    csc(2x2)=1sin(2x2)\csc{\left(2 x^{2} \right)} = \frac{1}{\sin{\left(2 x^{2} \right)}}

  2. Let u=sin(2x2)u = \sin{\left(2 x^{2} \right)}.

  3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

  4. Then, apply the chain rule. Multiply by ddxsin(2x2)\frac{d}{d x} \sin{\left(2 x^{2} \right)}:

    1. Let u=2x2u = 2 x^{2}.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx2x2\frac{d}{d x} 2 x^{2}:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        So, the result is: 4x4 x

      The result of the chain rule is:

      4xcos(2x2)4 x \cos{\left(2 x^{2} \right)}

    The result of the chain rule is:

    4xcos(2x2)sin2(2x2)- \frac{4 x \cos{\left(2 x^{2} \right)}}{\sin^{2}{\left(2 x^{2} \right)}}


The answer is:

4xcos(2x2)sin2(2x2)- \frac{4 x \cos{\left(2 x^{2} \right)}}{\sin^{2}{\left(2 x^{2} \right)}}

The graph
02468-8-6-4-2-1010-5000050000
The first derivative [src]
        /   2\    /   2\
-4*x*cot\2*x /*csc\2*x /
4xcot(2x2)csc(2x2)- 4 x \cot{\left(2 x^{2} \right)} \csc{\left(2 x^{2} \right)}
The second derivative [src]
  /     /   2\      2    2/   2\      2 /       2/   2\\\    /   2\
4*\- cot\2*x / + 4*x *cot \2*x / + 4*x *\1 + cot \2*x ///*csc\2*x /
4(4x2cot2(2x2)+4x2(cot2(2x2)+1)cot(2x2))csc(2x2)4 \cdot \left(4 x^{2} \cot^{2}{\left(2 x^{2} \right)} + 4 x^{2} \left(\cot^{2}{\left(2 x^{2} \right)} + 1\right) - \cot{\left(2 x^{2} \right)}\right) \csc{\left(2 x^{2} \right)}
The third derivative [src]
     /         2/   2\      2    3/   2\       2 /       2/   2\\    /   2\\    /   2\
16*x*\3 + 6*cot \2*x / - 4*x *cot \2*x / - 20*x *\1 + cot \2*x //*cot\2*x //*csc\2*x /
16x(4x2cot3(2x2)20x2(cot2(2x2)+1)cot(2x2)+6cot2(2x2)+3)csc(2x2)16 x \left(- 4 x^{2} \cot^{3}{\left(2 x^{2} \right)} - 20 x^{2} \left(\cot^{2}{\left(2 x^{2} \right)} + 1\right) \cot{\left(2 x^{2} \right)} + 6 \cot^{2}{\left(2 x^{2} \right)} + 3\right) \csc{\left(2 x^{2} \right)}
The graph
Derivative of y=csc(2x²)