Mister Exam

Other calculators

Derivative of tanx^(1/3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
3 ________
\/ tan(x) 
tan(x)3\sqrt[3]{\tan{\left(x \right)}}
tan(x)^(1/3)
Detail solution
  1. Let u=tan(x)u = \tan{\left(x \right)}.

  2. Apply the power rule: u3\sqrt[3]{u} goes to 13u23\frac{1}{3 u^{\frac{2}{3}}}

  3. Then, apply the chain rule. Multiply by ddxtan(x)\frac{d}{d x} \tan{\left(x \right)}:

    1. Rewrite the function to be differentiated:

      tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

    2. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)} and g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      Now plug in to the quotient rule:

      sin2(x)+cos2(x)cos2(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

    The result of the chain rule is:

    sin2(x)+cos2(x)3cos2(x)tan23(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{3 \cos^{2}{\left(x \right)} \tan^{\frac{2}{3}}{\left(x \right)}}

  4. Now simplify:

    13cos2(x)tan23(x)\frac{1}{3 \cos^{2}{\left(x \right)} \tan^{\frac{2}{3}}{\left(x \right)}}


The answer is:

13cos2(x)tan23(x)\frac{1}{3 \cos^{2}{\left(x \right)} \tan^{\frac{2}{3}}{\left(x \right)}}

The graph
02468-8-6-4-2-1010050
The first derivative [src]
       2   
1   tan (x)
- + -------
3      3   
-----------
    2/3    
 tan   (x) 
tan2(x)3+13tan23(x)\frac{\frac{\tan^{2}{\left(x \right)}}{3} + \frac{1}{3}}{\tan^{\frac{2}{3}}{\left(x \right)}}
The second derivative [src]
                /                      2   \
  /       2   \ |  3 ________   1 + tan (x)|
2*\1 + tan (x)/*|3*\/ tan(x)  - -----------|
                |                   5/3    |
                \                tan   (x) /
--------------------------------------------
                     9                      
2(tan2(x)+1tan53(x)+3tan(x)3)(tan2(x)+1)9\frac{2 \left(- \frac{\tan^{2}{\left(x \right)} + 1}{\tan^{\frac{5}{3}}{\left(x \right)}} + 3 \sqrt[3]{\tan{\left(x \right)}}\right) \left(\tan^{2}{\left(x \right)} + 1\right)}{9}
The third derivative [src]
                /                                                2\
                |                 /       2   \     /       2   \ |
  /       2   \ |      4/3      9*\1 + tan (x)/   5*\1 + tan (x)/ |
2*\1 + tan (x)/*|18*tan   (x) - --------------- + ----------------|
                |                     2/3               8/3       |
                \                  tan   (x)         tan   (x)    /
-------------------------------------------------------------------
                                 27                                
2(tan2(x)+1)(5(tan2(x)+1)2tan83(x)9(tan2(x)+1)tan23(x)+18tan43(x))27\frac{2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(\frac{5 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\tan^{\frac{8}{3}}{\left(x \right)}} - \frac{9 \left(\tan^{2}{\left(x \right)} + 1\right)}{\tan^{\frac{2}{3}}{\left(x \right)}} + 18 \tan^{\frac{4}{3}}{\left(x \right)}\right)}{27}