Mister Exam

Other calculators


y=(2x+3)^3

Derivative of y=(2x+3)^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         3
(2*x + 3) 
(2x+3)3\left(2 x + 3\right)^{3}
d /         3\
--\(2*x + 3) /
dx            
ddx(2x+3)3\frac{d}{d x} \left(2 x + 3\right)^{3}
Detail solution
  1. Let u=2x+3u = 2 x + 3.

  2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

  3. Then, apply the chain rule. Multiply by ddx(2x+3)\frac{d}{d x} \left(2 x + 3\right):

    1. Differentiate 2x+32 x + 3 term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      2. The derivative of the constant 33 is zero.

      The result is: 22

    The result of the chain rule is:

    6(2x+3)26 \left(2 x + 3\right)^{2}

  4. Now simplify:

    6(2x+3)26 \left(2 x + 3\right)^{2}


The answer is:

6(2x+3)26 \left(2 x + 3\right)^{2}

The graph
02468-8-6-4-2-1010-2000020000
The first derivative [src]
           2
6*(2*x + 3) 
6(2x+3)26 \left(2 x + 3\right)^{2}
The second derivative [src]
24*(3 + 2*x)
24(2x+3)24 \cdot \left(2 x + 3\right)
The third derivative [src]
48
4848
The graph
Derivative of y=(2x+3)^3