Mister Exam

Derivative of e^(2x)sin2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*x         
e   *sin(2*x)
e2xsin(2x)e^{2 x} \sin{\left(2 x \right)}
d / 2*x         \
--\e   *sin(2*x)/
dx               
ddxe2xsin(2x)\frac{d}{d x} e^{2 x} \sin{\left(2 x \right)}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=e2xf{\left(x \right)} = e^{2 x}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of eue^{u} is itself.

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2e2x2 e^{2 x}

    g(x)=sin(2x)g{\left(x \right)} = \sin{\left(2 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2cos(2x)2 \cos{\left(2 x \right)}

    The result is: 2e2xsin(2x)+2e2xcos(2x)2 e^{2 x} \sin{\left(2 x \right)} + 2 e^{2 x} \cos{\left(2 x \right)}

  2. Now simplify:

    22e2xsin(2x+π4)2 \sqrt{2} e^{2 x} \sin{\left(2 x + \frac{\pi}{4} \right)}


The answer is:

22e2xsin(2x+π4)2 \sqrt{2} e^{2 x} \sin{\left(2 x + \frac{\pi}{4} \right)}

The graph
02468-8-6-4-2-10102000000000-1000000000
The first derivative [src]
            2*x      2*x         
2*cos(2*x)*e    + 2*e   *sin(2*x)
2e2xsin(2x)+2e2xcos(2x)2 e^{2 x} \sin{\left(2 x \right)} + 2 e^{2 x} \cos{\left(2 x \right)}
The second derivative [src]
            2*x
8*cos(2*x)*e   
8e2xcos(2x)8 e^{2 x} \cos{\left(2 x \right)}
The third derivative [src]
                           2*x
16*(-sin(2*x) + cos(2*x))*e   
16(sin(2x)+cos(2x))e2x16 \left(- \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{2 x}
The graph
Derivative of e^(2x)sin2x