Mister Exam

Other calculators


(x^2+5)/(x+2)

Derivative of (x^2+5)/(x+2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2    
x  + 5
------
x + 2 
$$\frac{x^{2} + 5}{x + 2}$$
(x^2 + 5)/(x + 2)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:


The answer is:

The graph
The first derivative [src]
    2             
   x  + 5     2*x 
- -------- + -----
         2   x + 2
  (x + 2)         
$$\frac{2 x}{x + 2} - \frac{x^{2} + 5}{\left(x + 2\right)^{2}}$$
The second derivative [src]
  /          2         \
  |     5 + x      2*x |
2*|1 + -------- - -----|
  |           2   2 + x|
  \    (2 + x)         /
------------------------
         2 + x          
$$\frac{2 \left(- \frac{2 x}{x + 2} + 1 + \frac{x^{2} + 5}{\left(x + 2\right)^{2}}\right)}{x + 2}$$
The third derivative [src]
  /           2         \
  |      5 + x      2*x |
6*|-1 - -------- + -----|
  |            2   2 + x|
  \     (2 + x)         /
-------------------------
                2        
         (2 + x)         
$$\frac{6 \left(\frac{2 x}{x + 2} - 1 - \frac{x^{2} + 5}{\left(x + 2\right)^{2}}\right)}{\left(x + 2\right)^{2}}$$
The graph
Derivative of (x^2+5)/(x+2)