Mister Exam

Derivative of 1/sin(y)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1   
------
sin(y)
$$\frac{1}{\sin{\left(y \right)}}$$
1/sin(y)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of sine is cosine:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
-cos(y) 
--------
   2    
sin (y) 
$$- \frac{\cos{\left(y \right)}}{\sin^{2}{\left(y \right)}}$$
The second derivative [src]
         2   
    2*cos (y)
1 + ---------
        2    
     sin (y) 
-------------
    sin(y)   
$$\frac{1 + \frac{2 \cos^{2}{\left(y \right)}}{\sin^{2}{\left(y \right)}}}{\sin{\left(y \right)}}$$
The third derivative [src]
 /         2   \        
 |    6*cos (y)|        
-|5 + ---------|*cos(y) 
 |        2    |        
 \     sin (y) /        
------------------------
           2            
        sin (y)         
$$- \frac{\left(5 + \frac{6 \cos^{2}{\left(y \right)}}{\sin^{2}{\left(y \right)}}\right) \cos{\left(y \right)}}{\sin^{2}{\left(y \right)}}$$
The graph
Derivative of 1/sin(y)