Mister Exam

Derivative of 1/sin(y)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1   
------
sin(y)
1sin(y)\frac{1}{\sin{\left(y \right)}}
1/sin(y)
Detail solution
  1. Let u=sin(y)u = \sin{\left(y \right)}.

  2. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

  3. Then, apply the chain rule. Multiply by ddysin(y)\frac{d}{d y} \sin{\left(y \right)}:

    1. The derivative of sine is cosine:

      ddysin(y)=cos(y)\frac{d}{d y} \sin{\left(y \right)} = \cos{\left(y \right)}

    The result of the chain rule is:

    cos(y)sin2(y)- \frac{\cos{\left(y \right)}}{\sin^{2}{\left(y \right)}}


The answer is:

cos(y)sin2(y)- \frac{\cos{\left(y \right)}}{\sin^{2}{\left(y \right)}}

The graph
02468-8-6-4-2-1010-1000010000
The first derivative [src]
-cos(y) 
--------
   2    
sin (y) 
cos(y)sin2(y)- \frac{\cos{\left(y \right)}}{\sin^{2}{\left(y \right)}}
The second derivative [src]
         2   
    2*cos (y)
1 + ---------
        2    
     sin (y) 
-------------
    sin(y)   
1+2cos2(y)sin2(y)sin(y)\frac{1 + \frac{2 \cos^{2}{\left(y \right)}}{\sin^{2}{\left(y \right)}}}{\sin{\left(y \right)}}
The third derivative [src]
 /         2   \        
 |    6*cos (y)|        
-|5 + ---------|*cos(y) 
 |        2    |        
 \     sin (y) /        
------------------------
           2            
        sin (y)         
(5+6cos2(y)sin2(y))cos(y)sin2(y)- \frac{\left(5 + \frac{6 \cos^{2}{\left(y \right)}}{\sin^{2}{\left(y \right)}}\right) \cos{\left(y \right)}}{\sin^{2}{\left(y \right)}}
The graph
Derivative of 1/sin(y)