Mister Exam

Other calculators


x^2*exp(0.4*x)-2

Derivative of x^2*exp(0.4*x)-2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    2*x    
    ---    
 2   5     
x *e    - 2
x2e2x52x^{2} e^{\frac{2 x}{5}} - 2
Detail solution
  1. Differentiate x2e2x52x^{2} e^{\frac{2 x}{5}} - 2 term by term:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=x2f{\left(x \right)} = x^{2}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Apply the power rule: x2x^{2} goes to 2x2 x

      g(x)=e2x5g{\left(x \right)} = e^{\frac{2 x}{5}}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=2x5u = \frac{2 x}{5}.

      2. The derivative of eue^{u} is itself.

      3. Then, apply the chain rule. Multiply by ddx2x5\frac{d}{d x} \frac{2 x}{5}:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 25\frac{2}{5}

        The result of the chain rule is:

        2e2x55\frac{2 e^{\frac{2 x}{5}}}{5}

      The result is: 2x2e2x55+2xe2x5\frac{2 x^{2} e^{\frac{2 x}{5}}}{5} + 2 x e^{\frac{2 x}{5}}

    2. The derivative of the constant 2-2 is zero.

    The result is: 2x2e2x55+2xe2x5\frac{2 x^{2} e^{\frac{2 x}{5}}}{5} + 2 x e^{\frac{2 x}{5}}

  2. Now simplify:

    2x(x+5)e2x55\frac{2 x \left(x + 5\right) e^{\frac{2 x}{5}}}{5}


The answer is:

2x(x+5)e2x55\frac{2 x \left(x + 5\right) e^{\frac{2 x}{5}}}{5}

The graph
02468-8-6-4-2-1010-500010000
The first derivative [src]
                 2*x
     2*x         ---
     ---      2   5 
      5    2*x *e   
2*x*e    + ---------
               5    
2x2e2x55+2xe2x5\frac{2 x^{2} e^{\frac{2 x}{5}}}{5} + 2 x e^{\frac{2 x}{5}}
The second derivative [src]
                    2*x
  /       2      \  ---
  |    2*x    4*x|   5 
2*|1 + ---- + ---|*e   
  \     25     5 /     
2(2x225+4x5+1)e2x52 \left(\frac{2 x^{2}}{25} + \frac{4 x}{5} + 1\right) e^{\frac{2 x}{5}}
The third derivative [src]
                      2*x
                      ---
  /        2       \   5 
4*\75 + 2*x  + 30*x/*e   
-------------------------
           125           
4(2x2+30x+75)e2x5125\frac{4 \left(2 x^{2} + 30 x + 75\right) e^{\frac{2 x}{5}}}{125}
The graph
Derivative of x^2*exp(0.4*x)-2