Mister Exam

Other calculators


(x^2-x+1)/(x-1)

Derivative of (x^2-x+1)/(x-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2        
x  - x + 1
----------
  x - 1   
(x2x)+1x1\frac{\left(x^{2} - x\right) + 1}{x - 1}
(x^2 - x + 1)/(x - 1)
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=x2x+1f{\left(x \right)} = x^{2} - x + 1 and g(x)=x1g{\left(x \right)} = x - 1.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate x2x+1x^{2} - x + 1 term by term:

      1. The derivative of the constant 11 is zero.

      2. Apply the power rule: x2x^{2} goes to 2x2 x

      3. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 1-1

      The result is: 2x12 x - 1

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate x1x - 1 term by term:

      1. The derivative of the constant 1-1 is zero.

      2. Apply the power rule: xx goes to 11

      The result is: 11

    Now plug in to the quotient rule:

    x2+x+(x1)(2x1)1(x1)2\frac{- x^{2} + x + \left(x - 1\right) \left(2 x - 1\right) - 1}{\left(x - 1\right)^{2}}

  2. Now simplify:

    x(x2)x22x+1\frac{x \left(x - 2\right)}{x^{2} - 2 x + 1}


The answer is:

x(x2)x22x+1\frac{x \left(x - 2\right)}{x^{2} - 2 x + 1}

The graph
02468-8-6-4-2-1010-200100
The first derivative [src]
            2        
-1 + 2*x   x  - x + 1
-------- - ----------
 x - 1             2 
            (x - 1)  
2x1x1(x2x)+1(x1)2\frac{2 x - 1}{x - 1} - \frac{\left(x^{2} - x\right) + 1}{\left(x - 1\right)^{2}}
The second derivative [src]
  /         2               \
  |    1 + x  - x   -1 + 2*x|
2*|1 + ---------- - --------|
  |            2     -1 + x |
  \    (-1 + x)             /
-----------------------------
            -1 + x           
2(12x1x1+x2x+1(x1)2)x1\frac{2 \left(1 - \frac{2 x - 1}{x - 1} + \frac{x^{2} - x + 1}{\left(x - 1\right)^{2}}\right)}{x - 1}
The third derivative [src]
  /                     2    \
  |     -1 + 2*x   1 + x  - x|
6*|-1 + -------- - ----------|
  |      -1 + x            2 |
  \                (-1 + x)  /
------------------------------
                  2           
          (-1 + x)            
6(1+2x1x1x2x+1(x1)2)(x1)2\frac{6 \left(-1 + \frac{2 x - 1}{x - 1} - \frac{x^{2} - x + 1}{\left(x - 1\right)^{2}}\right)}{\left(x - 1\right)^{2}}
The graph
Derivative of (x^2-x+1)/(x-1)