Mister Exam

Derivative of 4^(2*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*x
4   
42x4^{2 x}
4^(2*x)
Detail solution
  1. Let u=2xu = 2 x.

  2. ddu4u=4ulog(4)\frac{d}{d u} 4^{u} = 4^{u} \log{\left(4 \right)}

  3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: xx goes to 11

      So, the result is: 22

    The result of the chain rule is:

    242xlog(4)2 \cdot 4^{2 x} \log{\left(4 \right)}

  4. Now simplify:

    24x+2log(2)2^{4 x + 2} \log{\left(2 \right)}


The answer is:

24x+2log(2)2^{4 x + 2} \log{\left(2 \right)}

The graph
02468-8-6-4-2-101005000000000000
The first derivative [src]
   2*x       
2*4   *log(4)
242xlog(4)2 \cdot 4^{2 x} \log{\left(4 \right)}
The second derivative [src]
   2*x    2   
4*4   *log (4)
442xlog(4)24 \cdot 4^{2 x} \log{\left(4 \right)}^{2}
The third derivative [src]
   2*x    3   
8*4   *log (4)
842xlog(4)38 \cdot 4^{2 x} \log{\left(4 \right)}^{3}
The graph
Derivative of 4^(2*x)