Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Don't know the steps in finding this derivative.
But the derivative is
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
Don't know the steps in finding this derivative.
But the derivative is
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
___ / / ___\\ \/ x | 2| \/ x || / 1 log(x)\ x *\1 + tan \x //*|----- + -------| | ___ ___| \\/ x 2*\/ x /
/ ___ / ___\\ ___ / / ___\\ | 2 \/ x 2 | \/ x || \/ x | 2| \/ x || |(2 + log(x)) log(x) 2*x *(2 + log(x)) *tan\x /| x *\1 + tan \x //*|------------- - ------ + ----------------------------------| | x 3/2 x | \ x / --------------------------------------------------------------------------------------- 4
/ ___ / / ___\\ ___ / ___\ ___ / ___\ ___ / ___\\ ___ / / ___\\ | 3 2*\/ x 3 | 2| \/ x || 2*\/ x 3 2| \/ x | \/ x 3 | \/ x | \/ x | \/ x || \/ x | 2| \/ x || | 2 (2 + log(x)) 3*log(x) 3*(2 + log(x))*log(x) 2*x *(2 + log(x)) *\1 + tan \x // 4*x *(2 + log(x)) *tan \x / 6*x *(2 + log(x)) *tan\x / 6*x *(2 + log(x))*log(x)*tan\x /| x *\1 + tan \x //*|- ---- + ------------- + -------- - --------------------- + ------------------------------------------- + ------------------------------------- + ---------------------------------- - ----------------------------------------| | 5/2 3/2 5/2 2 3/2 3/2 3/2 2 | \ x x x x x x x x / ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 8