Mister Exam

Derivative of tg(x^(sqrt(x)))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   ___\
   | \/ x |
tan\x     /
$$\tan{\left(x^{\sqrt{x}} \right)}$$
Detail solution
  1. Rewrite the function to be differentiated:

  2. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Don't know the steps in finding this derivative.

        But the derivative is

      The result of the chain rule is:

    To find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. Don't know the steps in finding this derivative.

        But the derivative is

      The result of the chain rule is:

    Now plug in to the quotient rule:

  3. Now simplify:


The answer is:

The graph
The first derivative [src]
   ___ /        /   ___\\                  
 \/ x  |       2| \/ x || /  1      log(x)\
x     *\1 + tan \x     //*|----- + -------|
                          |  ___       ___|
                          \\/ x    2*\/ x /
$$x^{\sqrt{x}} \left(\frac{\log{\left(x \right)}}{2 \sqrt{x}} + \frac{1}{\sqrt{x}}\right) \left(\tan^{2}{\left(x^{\sqrt{x}} \right)} + 1\right)$$
The second derivative [src]
                          /                              ___                  /   ___\\
   ___ /        /   ___\\ |            2               \/ x              2    | \/ x ||
 \/ x  |       2| \/ x || |(2 + log(x))    log(x)   2*x     *(2 + log(x)) *tan\x     /|
x     *\1 + tan \x     //*|------------- - ------ + ----------------------------------|
                          |      x           3/2                    x                 |
                          \                 x                                         /
---------------------------------------------------------------------------------------
                                           4                                           
$$\frac{x^{\sqrt{x}} \left(\tan^{2}{\left(x^{\sqrt{x}} \right)} + 1\right) \left(\frac{2 x^{\sqrt{x}} \left(\log{\left(x \right)} + 2\right)^{2} \tan{\left(x^{\sqrt{x}} \right)}}{x} + \frac{\left(\log{\left(x \right)} + 2\right)^{2}}{x} - \frac{\log{\left(x \right)}}{x^{\frac{3}{2}}}\right)}{4}$$
The third derivative [src]
                          /                                                                   ___               /        /   ___\\          ___                   /   ___\        ___                  /   ___\        ___                        /   ___\\
   ___ /        /   ___\\ |                     3                                         2*\/ x              3 |       2| \/ x ||      2*\/ x              3    2| \/ x |      \/ x              3    | \/ x |      \/ x                         | \/ x ||
 \/ x  |       2| \/ x || |   2     (2 + log(x))    3*log(x)   3*(2 + log(x))*log(x)   2*x       *(2 + log(x)) *\1 + tan \x     //   4*x       *(2 + log(x)) *tan \x     /   6*x     *(2 + log(x)) *tan\x     /   6*x     *(2 + log(x))*log(x)*tan\x     /|
x     *\1 + tan \x     //*|- ---- + ------------- + -------- - --------------------- + ------------------------------------------- + ------------------------------------- + ---------------------------------- - ----------------------------------------|
                          |   5/2         3/2          5/2                2                                 3/2                                        3/2                                   3/2                                      2                   |
                          \  x           x            x                  x                                 x                                          x                                     x                                        x                    /
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                             8                                                                                                                             
$$\frac{x^{\sqrt{x}} \left(\tan^{2}{\left(x^{\sqrt{x}} \right)} + 1\right) \left(- \frac{6 x^{\sqrt{x}} \left(\log{\left(x \right)} + 2\right) \log{\left(x \right)} \tan{\left(x^{\sqrt{x}} \right)}}{x^{2}} - \frac{3 \left(\log{\left(x \right)} + 2\right) \log{\left(x \right)}}{x^{2}} + \frac{2 x^{2 \sqrt{x}} \left(\log{\left(x \right)} + 2\right)^{3} \left(\tan^{2}{\left(x^{\sqrt{x}} \right)} + 1\right)}{x^{\frac{3}{2}}} + \frac{4 x^{2 \sqrt{x}} \left(\log{\left(x \right)} + 2\right)^{3} \tan^{2}{\left(x^{\sqrt{x}} \right)}}{x^{\frac{3}{2}}} + \frac{6 x^{\sqrt{x}} \left(\log{\left(x \right)} + 2\right)^{3} \tan{\left(x^{\sqrt{x}} \right)}}{x^{\frac{3}{2}}} + \frac{\left(\log{\left(x \right)} + 2\right)^{3}}{x^{\frac{3}{2}}} + \frac{3 \log{\left(x \right)}}{x^{\frac{5}{2}}} - \frac{2}{x^{\frac{5}{2}}}\right)}{8}$$
The graph
Derivative of tg(x^(sqrt(x)))