___
\/ x
(sin(3*x))
/ ___\ d | \/ x | --\(sin(3*x)) / dx
Don't know the steps in finding this derivative.
But the derivative is
Now simplify:
The answer is:
___ / ___ \
\/ x |log(sin(3*x)) 3*\/ x *cos(3*x)|
(sin(3*x)) *|------------- + ----------------|
| ___ sin(3*x) |
\ 2*\/ x /
/ 2 \
| / ___ \ |
| |log(sin(3*x)) 6*\/ x *cos(3*x)| |
| |------------- + ----------------| |
___ | | ___ sin(3*x) | ___ 2 |
\/ x | ___ \ \/ x / log(sin(3*x)) 9*\/ x *cos (3*x) 3*cos(3*x) |
(sin(3*x)) *|- 9*\/ x + ----------------------------------- - ------------- - ----------------- + --------------|
| 4 3/2 2 ___ |
\ 4*x sin (3*x) \/ x *sin(3*x)/
/ 3 \
| / ___ \ / ___ \ / ___ 2 \ |
| |log(sin(3*x)) 6*\/ x *cos(3*x)| |log(sin(3*x)) 6*\/ x *cos(3*x)| | ___ log(sin(3*x)) 12*cos(3*x) 36*\/ x *cos (3*x)| |
| |------------- + ----------------| 3*|------------- + ----------------|*|36*\/ x + ------------- - -------------- + ------------------| |
___ | | ___ sin(3*x) | | ___ sin(3*x) | | 3/2 ___ 2 | ___ 3 ___ 2 |
\/ x | 27 \ \/ x / \ \/ x / \ x \/ x *sin(3*x) sin (3*x) / 3*log(sin(3*x)) 54*\/ x *cos (3*x) 54*\/ x *cos(3*x) 27*cos (3*x) 9*cos(3*x) |
(sin(3*x)) *|- ------- + ----------------------------------- - ----------------------------------------------------------------------------------------------------- + --------------- + ------------------ + ----------------- - ----------------- - ---------------|
| ___ 8 8 5/2 3 sin(3*x) ___ 2 3/2 |
\ 2*\/ x 8*x sin (3*x) 2*\/ x *sin (3*x) 4*x *sin(3*x)/