Mister Exam

Derivative of x^(n+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 n + 1
x     
$$x^{n + 1}$$
x^(n + 1)
Detail solution
  1. Apply the power rule: goes to

  2. Now simplify:


The answer is:

The first derivative [src]
 n + 1        
x     *(n + 1)
--------------
      x       
$$\frac{x^{n + 1} \left(n + 1\right)}{x}$$
The second derivative [src]
   1 + n        
n*x     *(1 + n)
----------------
        2       
       x        
$$\frac{n x^{n + 1} \left(n + 1\right)}{x^{2}}$$
The third derivative [src]
 1 + n         /            2      \
x     *(1 + n)*\-1 + (1 + n)  - 3*n/
------------------------------------
                  3                 
                 x                  
$$\frac{x^{n + 1} \left(n + 1\right) \left(- 3 n + \left(n + 1\right)^{2} - 1\right)}{x^{3}}$$