Mister Exam

Derivative of x^5cosx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 5       
x *cos(x)
$$x^{5} \cos{\left(x \right)}$$
d / 5       \
--\x *cos(x)/
dx           
$$\frac{d}{d x} x^{5} \cos{\left(x \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. The derivative of cosine is negative sine:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   5             4       
- x *sin(x) + 5*x *cos(x)
$$- x^{5} \sin{\left(x \right)} + 5 x^{4} \cos{\left(x \right)}$$
The second derivative [src]
 3 /             2                     \
x *\20*cos(x) - x *cos(x) - 10*x*sin(x)/
$$x^{3} \left(- x^{2} \cos{\left(x \right)} - 10 x \sin{\left(x \right)} + 20 \cos{\left(x \right)}\right)$$
The third derivative [src]
 2 /             3                            2       \
x *\60*cos(x) + x *sin(x) - 60*x*sin(x) - 15*x *cos(x)/
$$x^{2} \left(x^{3} \sin{\left(x \right)} - 15 x^{2} \cos{\left(x \right)} - 60 x \sin{\left(x \right)} + 60 \cos{\left(x \right)}\right)$$
The graph
Derivative of x^5cosx