Mister Exam

Other calculators

Integral of x^5cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi             
 --             
 3              
  /             
 |              
 |   5          
 |  x *cos(x) dx
 |              
/               
0               
$$\int\limits_{0}^{\frac{\pi}{3}} x^{5} \cos{\left(x \right)}\, dx$$
Integral(x^5*cos(x), (x, 0, pi/3))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of cosine is sine:

    Now evaluate the sub-integral.

  2. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of sine is negative cosine:

    Now evaluate the sub-integral.

  3. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of cosine is sine:

    Now evaluate the sub-integral.

  4. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of sine is negative cosine:

    Now evaluate the sub-integral.

  5. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of cosine is sine:

    Now evaluate the sub-integral.

  6. The integral of a constant times a function is the constant times the integral of the function:

    1. The integral of sine is negative cosine:

    So, the result is:

  7. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                                                    
 |                                                                                                     
 |  5                               5              2              3             4                      
 | x *cos(x) dx = C + 120*cos(x) + x *sin(x) - 60*x *cos(x) - 20*x *sin(x) + 5*x *cos(x) + 120*x*sin(x)
 |                                                                                                     
/                                                                                                      
$$\int x^{5} \cos{\left(x \right)}\, dx = C + x^{5} \sin{\left(x \right)} + 5 x^{4} \cos{\left(x \right)} - 20 x^{3} \sin{\left(x \right)} - 60 x^{2} \cos{\left(x \right)} + 120 x \sin{\left(x \right)} + 120 \cos{\left(x \right)}$$
The graph
The answer [src]
           2       4                      ___   3     ___   5
      10*pi    5*pi            ___   10*\/ 3 *pi    \/ 3 *pi 
-60 - ------ + ----- + 20*pi*\/ 3  - ------------ + ---------
        3       162                       27           486   
$$-60 - \frac{10 \pi^{2}}{3} - \frac{10 \sqrt{3} \pi^{3}}{27} + \frac{\sqrt{3} \pi^{5}}{486} + \frac{5 \pi^{4}}{162} + 20 \sqrt{3} \pi$$
=
=
           2       4                      ___   3     ___   5
      10*pi    5*pi            ___   10*\/ 3 *pi    \/ 3 *pi 
-60 - ------ + ----- + 20*pi*\/ 3  - ------------ + ---------
        3       162                       27           486   
$$-60 - \frac{10 \pi^{2}}{3} - \frac{10 \sqrt{3} \pi^{3}}{27} + \frac{\sqrt{3} \pi^{5}}{486} + \frac{5 \pi^{4}}{162} + 20 \sqrt{3} \pi$$
-60 - 10*pi^2/3 + 5*pi^4/162 + 20*pi*sqrt(3) - 10*sqrt(3)*pi^3/27 + sqrt(3)*pi^5/486
Numerical answer [src]
0.135818842576677
0.135818842576677

    Use the examples entering the upper and lower limits of integration.