Mister Exam

Other calculators


x*tan(4*x-1)

Derivative of x*tan(4*x-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x*tan(4*x - 1)
xtan(4x1)x \tan{\left(4 x - 1 \right)}
x*tan(4*x - 1)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    g(x)=tan(4x1)g{\left(x \right)} = \tan{\left(4 x - 1 \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Rewrite the function to be differentiated:

      tan(4x1)=sin(4x1)cos(4x1)\tan{\left(4 x - 1 \right)} = \frac{\sin{\left(4 x - 1 \right)}}{\cos{\left(4 x - 1 \right)}}

    2. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=sin(4x1)f{\left(x \right)} = \sin{\left(4 x - 1 \right)} and g(x)=cos(4x1)g{\left(x \right)} = \cos{\left(4 x - 1 \right)}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Let u=4x1u = 4 x - 1.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx(4x1)\frac{d}{d x} \left(4 x - 1\right):

        1. Differentiate 4x14 x - 1 term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 44

          2. The derivative of the constant 1-1 is zero.

          The result is: 44

        The result of the chain rule is:

        4cos(4x1)4 \cos{\left(4 x - 1 \right)}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=4x1u = 4 x - 1.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx(4x1)\frac{d}{d x} \left(4 x - 1\right):

        1. Differentiate 4x14 x - 1 term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 44

          2. The derivative of the constant 1-1 is zero.

          The result is: 44

        The result of the chain rule is:

        4sin(4x1)- 4 \sin{\left(4 x - 1 \right)}

      Now plug in to the quotient rule:

      4sin2(4x1)+4cos2(4x1)cos2(4x1)\frac{4 \sin^{2}{\left(4 x - 1 \right)} + 4 \cos^{2}{\left(4 x - 1 \right)}}{\cos^{2}{\left(4 x - 1 \right)}}

    The result is: x(4sin2(4x1)+4cos2(4x1))cos2(4x1)+tan(4x1)\frac{x \left(4 \sin^{2}{\left(4 x - 1 \right)} + 4 \cos^{2}{\left(4 x - 1 \right)}\right)}{\cos^{2}{\left(4 x - 1 \right)}} + \tan{\left(4 x - 1 \right)}

  2. Now simplify:

    4xcos2(4x1)+tan(4x1)\frac{4 x}{\cos^{2}{\left(4 x - 1 \right)}} + \tan{\left(4 x - 1 \right)}


The answer is:

4xcos2(4x1)+tan(4x1)\frac{4 x}{\cos^{2}{\left(4 x - 1 \right)}} + \tan{\left(4 x - 1 \right)}

The graph
02468-8-6-4-2-1010-5000001000000
The first derivative [src]
  /         2         \               
x*\4 + 4*tan (4*x - 1)/ + tan(4*x - 1)
x(4tan2(4x1)+4)+tan(4x1)x \left(4 \tan^{2}{\left(4 x - 1 \right)} + 4\right) + \tan{\left(4 x - 1 \right)}
The second derivative [src]
  /       2                 /       2          \              \
8*\1 + tan (-1 + 4*x) + 4*x*\1 + tan (-1 + 4*x)/*tan(-1 + 4*x)/
8(4x(tan2(4x1)+1)tan(4x1)+tan2(4x1)+1)8 \left(4 x \left(\tan^{2}{\left(4 x - 1 \right)} + 1\right) \tan{\left(4 x - 1 \right)} + \tan^{2}{\left(4 x - 1 \right)} + 1\right)
The third derivative [src]
   /       2          \ /                      /         2          \\
32*\1 + tan (-1 + 4*x)/*\3*tan(-1 + 4*x) + 4*x*\1 + 3*tan (-1 + 4*x)//
32(4x(3tan2(4x1)+1)+3tan(4x1))(tan2(4x1)+1)32 \left(4 x \left(3 \tan^{2}{\left(4 x - 1 \right)} + 1\right) + 3 \tan{\left(4 x - 1 \right)}\right) \left(\tan^{2}{\left(4 x - 1 \right)} + 1\right)
The graph
Derivative of x*tan(4*x-1)