Detail solution
-
Apply the product rule:
; to find :
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
The derivative of sine is cosine:
The result is:
; to find :
-
Rewrite the function to be differentiated:
-
Apply the quotient rule, which is:
and .
To find :
-
The derivative of sine is cosine:
To find :
-
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
/ 2 \ 2 / 2 \
\x *cos(x) + 2*x*sin(x)/*tan(x) + x *\1 + tan (x)/*sin(x)
$$x^{2} \left(\tan^{2}{\left(x \right)} + 1\right) \sin{\left(x \right)} + \left(x^{2} \cos{\left(x \right)} + 2 x \sin{\left(x \right)}\right) \tan{\left(x \right)}$$
The second derivative
[src]
/ 2 \ / 2 \ 2 / 2 \
\2*sin(x) - x *sin(x) + 4*x*cos(x)/*tan(x) + 2*x*\1 + tan (x)/*(2*sin(x) + x*cos(x)) + 2*x *\1 + tan (x)/*sin(x)*tan(x)
$$2 x^{2} \left(\tan^{2}{\left(x \right)} + 1\right) \sin{\left(x \right)} \tan{\left(x \right)} + 2 x \left(x \cos{\left(x \right)} + 2 \sin{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} + 1\right) + \left(- x^{2} \sin{\left(x \right)} + 4 x \cos{\left(x \right)} + 2 \sin{\left(x \right)}\right) \tan{\left(x \right)}$$
The third derivative
[src]
/ 2 \ / 2 \ / 2 \ 2 / 2 \ / 2 \ / 2 \
- \-6*cos(x) + x *cos(x) + 6*x*sin(x)/*tan(x) + 3*\1 + tan (x)/*\2*sin(x) - x *sin(x) + 4*x*cos(x)/ + 2*x *\1 + tan (x)/*\1 + 3*tan (x)/*sin(x) + 6*x*\1 + tan (x)/*(2*sin(x) + x*cos(x))*tan(x)
$$2 x^{2} \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) \sin{\left(x \right)} + 6 x \left(x \cos{\left(x \right)} + 2 \sin{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 3 \left(\tan^{2}{\left(x \right)} + 1\right) \left(- x^{2} \sin{\left(x \right)} + 4 x \cos{\left(x \right)} + 2 \sin{\left(x \right)}\right) - \left(x^{2} \cos{\left(x \right)} + 6 x \sin{\left(x \right)} - 6 \cos{\left(x \right)}\right) \tan{\left(x \right)}$$