3 ___ /1\ x*\/ x *sin|-| \x/
(x*x^(1/3))*sin(1/x)
Apply the product rule:
; to find :
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Apply the power rule: goes to
The result is:
; to find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Apply the power rule: goes to
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
/1\ 3 ___ /1\ cos|-| 4*\/ x *sin|-| \x/ \x/ - ------ + -------------- 2/3 3 x
/1\ sin|-| /1\ /1\ \x/ /1\ 4*sin|-| 2*cos|-| - ------ 8*cos|-| \x/ \x/ x \x/ -------- + ----------------- - -------- 9 x 3*x --------------------------------------- 2/3 x
/1\ /1\ cos|-| 6*sin|-| / /1\\ /1\ \x/ \x/ | sin|-|| /1\ - 6*cos|-| + ------ + -------- | /1\ \x/| /1\ 8*sin|-| \x/ 2 x 4*|2*cos|-| - ------| 4*cos|-| \x/ x \ \x/ x / \x/ - -------- + ------------------------------ + --------------------- - -------- 27 x x 3*x ------------------------------------------------------------------------------ 5/3 x