3 ___ /1\
x*\/ x *sin|-|
\x/
(x*x^(1/3))*sin(1/x)
Apply the product rule:
; to find :
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Apply the power rule: goes to
The result is:
; to find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Apply the power rule: goes to
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
/1\ 3 ___ /1\
cos|-| 4*\/ x *sin|-|
\x/ \x/
- ------ + --------------
2/3 3
x
/1\
sin|-|
/1\ /1\ \x/ /1\
4*sin|-| 2*cos|-| - ------ 8*cos|-|
\x/ \x/ x \x/
-------- + ----------------- - --------
9 x 3*x
---------------------------------------
2/3
x
/1\ /1\
cos|-| 6*sin|-| / /1\\
/1\ \x/ \x/ | sin|-||
/1\ - 6*cos|-| + ------ + -------- | /1\ \x/| /1\
8*sin|-| \x/ 2 x 4*|2*cos|-| - ------| 4*cos|-|
\x/ x \ \x/ x / \x/
- -------- + ------------------------------ + --------------------- - --------
27 x x 3*x
------------------------------------------------------------------------------
5/3
x