Mister Exam

Derivative of (x+4)/(sqrt(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x + 4
-----
  ___
\/ x 
$$\frac{x + 4}{\sqrt{x}}$$
d /x + 4\
--|-----|
dx|  ___|
  \\/ x /
$$\frac{d}{d x} \frac{x + 4}{\sqrt{x}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  1     x + 4 
----- - ------
  ___      3/2
\/ x    2*x   
$$\frac{1}{\sqrt{x}} - \frac{x + 4}{2 x^{\frac{3}{2}}}$$
The second derivative [src]
     3*(4 + x)
-1 + ---------
        4*x   
--------------
      3/2     
     x        
$$\frac{-1 + \frac{3 \left(x + 4\right)}{4 x}}{x^{\frac{3}{2}}}$$
The third derivative [src]
  /    5*(4 + x)\
3*|6 - ---------|
  \        x    /
-----------------
         5/2     
      8*x        
$$\frac{3 \cdot \left(6 - \frac{5 \left(x + 4\right)}{x}\right)}{8 x^{\frac{5}{2}}}$$
The graph
Derivative of (x+4)/(sqrt(x))