Mister Exam

Other calculators


e^(sin(1-3*x)^(2))

Derivative of e^(sin(1-3*x)^(2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    2         
 sin (1 - 3*x)
E             
$$e^{\sin^{2}{\left(1 - 3 x \right)}}$$
E^(sin(1 - 3*x)^2)
Detail solution
  1. Let .

  2. The derivative of is itself.

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        The result of the chain rule is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
                     2                      
                  sin (1 - 3*x)             
-6*cos(-1 + 3*x)*e             *sin(1 - 3*x)
$$- 6 e^{\sin^{2}{\left(1 - 3 x \right)}} \sin{\left(1 - 3 x \right)} \cos{\left(3 x - 1 \right)}$$
The second derivative [src]
                                                                           2          
   /   2                2                  2              2          \  sin (-1 + 3*x)
18*\cos (-1 + 3*x) - sin (-1 + 3*x) + 2*cos (-1 + 3*x)*sin (-1 + 3*x)/*e              
$$18 \left(2 \sin^{2}{\left(3 x - 1 \right)} \cos^{2}{\left(3 x - 1 \right)} - \sin^{2}{\left(3 x - 1 \right)} + \cos^{2}{\left(3 x - 1 \right)}\right) e^{\sin^{2}{\left(3 x - 1 \right)}}$$
The third derivative [src]
                                                                                                   2                        
    /          2                  2                  2              2          \                sin (-1 + 3*x)              
108*\-2 - 3*sin (-1 + 3*x) + 3*cos (-1 + 3*x) + 2*cos (-1 + 3*x)*sin (-1 + 3*x)/*cos(-1 + 3*x)*e              *sin(-1 + 3*x)
$$108 \left(2 \sin^{2}{\left(3 x - 1 \right)} \cos^{2}{\left(3 x - 1 \right)} - 3 \sin^{2}{\left(3 x - 1 \right)} + 3 \cos^{2}{\left(3 x - 1 \right)} - 2\right) e^{\sin^{2}{\left(3 x - 1 \right)}} \sin{\left(3 x - 1 \right)} \cos{\left(3 x - 1 \right)}$$
The graph
Derivative of e^(sin(1-3*x)^(2))