Mister Exam

Other calculators


e^(sin(1-3*x)^(2))

Derivative of e^(sin(1-3*x)^(2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    2         
 sin (1 - 3*x)
E             
esin2(13x)e^{\sin^{2}{\left(1 - 3 x \right)}}
E^(sin(1 - 3*x)^2)
Detail solution
  1. Let u=sin2(13x)u = \sin^{2}{\left(1 - 3 x \right)}.

  2. The derivative of eue^{u} is itself.

  3. Then, apply the chain rule. Multiply by ddxsin2(13x)\frac{d}{d x} \sin^{2}{\left(1 - 3 x \right)}:

    1. Let u=sin(13x)u = \sin{\left(1 - 3 x \right)}.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddxsin(13x)\frac{d}{d x} \sin{\left(1 - 3 x \right)}:

      1. Let u=13xu = 1 - 3 x.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx(13x)\frac{d}{d x} \left(1 - 3 x\right):

        1. Differentiate 13x1 - 3 x term by term:

          1. The derivative of the constant 11 is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 3-3

          The result is: 3-3

        The result of the chain rule is:

        3cos(3x1)- 3 \cos{\left(3 x - 1 \right)}

      The result of the chain rule is:

      6sin(13x)cos(3x1)- 6 \sin{\left(1 - 3 x \right)} \cos{\left(3 x - 1 \right)}

    The result of the chain rule is:

    6esin2(13x)sin(13x)cos(3x1)- 6 e^{\sin^{2}{\left(1 - 3 x \right)}} \sin{\left(1 - 3 x \right)} \cos{\left(3 x - 1 \right)}

  4. Now simplify:

    6esin2(3x1)sin(3x1)cos(3x1)6 e^{\sin^{2}{\left(3 x - 1 \right)}} \sin{\left(3 x - 1 \right)} \cos{\left(3 x - 1 \right)}


The answer is:

6esin2(3x1)sin(3x1)cos(3x1)6 e^{\sin^{2}{\left(3 x - 1 \right)}} \sin{\left(3 x - 1 \right)} \cos{\left(3 x - 1 \right)}

The graph
02468-8-6-4-2-1010-1010
The first derivative [src]
                     2                      
                  sin (1 - 3*x)             
-6*cos(-1 + 3*x)*e             *sin(1 - 3*x)
6esin2(13x)sin(13x)cos(3x1)- 6 e^{\sin^{2}{\left(1 - 3 x \right)}} \sin{\left(1 - 3 x \right)} \cos{\left(3 x - 1 \right)}
The second derivative [src]
                                                                           2          
   /   2                2                  2              2          \  sin (-1 + 3*x)
18*\cos (-1 + 3*x) - sin (-1 + 3*x) + 2*cos (-1 + 3*x)*sin (-1 + 3*x)/*e              
18(2sin2(3x1)cos2(3x1)sin2(3x1)+cos2(3x1))esin2(3x1)18 \left(2 \sin^{2}{\left(3 x - 1 \right)} \cos^{2}{\left(3 x - 1 \right)} - \sin^{2}{\left(3 x - 1 \right)} + \cos^{2}{\left(3 x - 1 \right)}\right) e^{\sin^{2}{\left(3 x - 1 \right)}}
The third derivative [src]
                                                                                                   2                        
    /          2                  2                  2              2          \                sin (-1 + 3*x)              
108*\-2 - 3*sin (-1 + 3*x) + 3*cos (-1 + 3*x) + 2*cos (-1 + 3*x)*sin (-1 + 3*x)/*cos(-1 + 3*x)*e              *sin(-1 + 3*x)
108(2sin2(3x1)cos2(3x1)3sin2(3x1)+3cos2(3x1)2)esin2(3x1)sin(3x1)cos(3x1)108 \left(2 \sin^{2}{\left(3 x - 1 \right)} \cos^{2}{\left(3 x - 1 \right)} - 3 \sin^{2}{\left(3 x - 1 \right)} + 3 \cos^{2}{\left(3 x - 1 \right)} - 2\right) e^{\sin^{2}{\left(3 x - 1 \right)}} \sin{\left(3 x - 1 \right)} \cos{\left(3 x - 1 \right)}
The graph
Derivative of e^(sin(1-3*x)^(2))