Mister Exam

Other calculators


(x²-4x)/(x-2)

Derivative of (x²-4x)/(x-2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2      
x  - 4*x
--------
 x - 2  
x24xx2\frac{x^{2} - 4 x}{x - 2}
  / 2      \
d |x  - 4*x|
--|--------|
dx\ x - 2  /
ddxx24xx2\frac{d}{d x} \frac{x^{2} - 4 x}{x - 2}
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=x24xf{\left(x \right)} = x^{2} - 4 x and g(x)=x2g{\left(x \right)} = x - 2.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate x24xx^{2} - 4 x term by term:

      1. Apply the power rule: x2x^{2} goes to 2x2 x

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 4-4

      The result is: 2x42 x - 4

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate x2x - 2 term by term:

      1. The derivative of the constant 2-2 is zero.

      2. Apply the power rule: xx goes to 11

      The result is: 11

    Now plug in to the quotient rule:

    x2+4x+(x2)(2x4)(x2)2\frac{- x^{2} + 4 x + \left(x - 2\right) \left(2 x - 4\right)}{\left(x - 2\right)^{2}}

  2. Now simplify:

    x24x+8x24x+4\frac{x^{2} - 4 x + 8}{x^{2} - 4 x + 4}


The answer is:

x24x+8x24x+4\frac{x^{2} - 4 x + 8}{x^{2} - 4 x + 4}

The graph
02468-8-6-4-2-1010-5001000
The first derivative [src]
            2      
-4 + 2*x   x  - 4*x
-------- - --------
 x - 2            2
           (x - 2) 
2x4x2x24x(x2)2\frac{2 x - 4}{x - 2} - \frac{x^{2} - 4 x}{\left(x - 2\right)^{2}}
The second derivative [src]
  /     x*(-4 + x)\
2*|-1 + ----------|
  |             2 |
  \     (-2 + x)  /
-------------------
       -2 + x      
2(x(x4)(x2)21)x2\frac{2 \left(\frac{x \left(x - 4\right)}{\left(x - 2\right)^{2}} - 1\right)}{x - 2}
The third derivative [src]
  /    x*(-4 + x)\
6*|1 - ----------|
  |            2 |
  \    (-2 + x)  /
------------------
            2     
    (-2 + x)      
6(x(x4)(x2)2+1)(x2)2\frac{6 \left(- \frac{x \left(x - 4\right)}{\left(x - 2\right)^{2}} + 1\right)}{\left(x - 2\right)^{2}}
The graph
Derivative of (x²-4x)/(x-2)