Apply the quotient rule, which is:
and .
To find :
Apply the power rule: goes to
To find :
Apply the product rule:
; to find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
; to find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
The result is:
Now plug in to the quotient rule:
The answer is:
1 x*(5 - 2*x) --------------- + ----------------- (x - 1)*(x - 4) 2 2 (x - 1) *(x - 4)
/ -5 + 2*x -5 + 2*x / 1 1 \\ 10 - 4*x + x*|-2 + -------- + -------- + (-5 + 2*x)*|------ + ------|| \ -1 + x -4 + x \-1 + x -4 + x// ---------------------------------------------------------------------- 2 2 (-1 + x) *(-4 + x)
/ / 1 1 \ / 1 1 \ \ | (-5 + 2*x)*|------ + ------| (-5 + 2*x)*|------ + ------| | | 8 8 / 1 1 1 \ 3*(-5 + 2*x) 3*(-5 + 2*x) \-1 + x -4 + x/ \-1 + x -4 + x/ 4*(-5 + 2*x) | 3*(-5 + 2*x) 3*(-5 + 2*x) / 1 1 \ -6 - x*|- ------ - ------ + 2*(-5 + 2*x)*|--------- + --------- + -----------------| + ------------ + ------------ + ---------------------------- + ---------------------------- + -----------------| + ------------ + ------------ + 3*(-5 + 2*x)*|------ + ------| | -1 + x -4 + x | 2 2 (-1 + x)*(-4 + x)| 2 2 -1 + x -4 + x (-1 + x)*(-4 + x)| -1 + x -4 + x \-1 + x -4 + x/ \ \(-1 + x) (-4 + x) / (-1 + x) (-4 + x) / -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 2 2 (-1 + x) *(-4 + x)