Mister Exam

Other calculators


y=x/(x-1)*(x-4)

Derivative of y=x/(x-1)*(x-4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x          
-----*(x - 4)
x - 1        
xx1(x4)\frac{x}{x - 1} \left(x - 4\right)
(x/(x - 1))*(x - 4)
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=x(x4)f{\left(x \right)} = x \left(x - 4\right) and g(x)=x1g{\left(x \right)} = x - 1.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Apply the power rule: xx goes to 11

      g(x)=x4g{\left(x \right)} = x - 4; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Differentiate x4x - 4 term by term:

        1. The derivative of the constant 4-4 is zero.

        2. Apply the power rule: xx goes to 11

        The result is: 11

      The result is: 2x42 x - 4

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate x1x - 1 term by term:

      1. The derivative of the constant 1-1 is zero.

      2. Apply the power rule: xx goes to 11

      The result is: 11

    Now plug in to the quotient rule:

    x(x4)+(x1)(2x4)(x1)2\frac{- x \left(x - 4\right) + \left(x - 1\right) \left(2 x - 4\right)}{\left(x - 1\right)^{2}}

  2. Now simplify:

    x22x+4x22x+1\frac{x^{2} - 2 x + 4}{x^{2} - 2 x + 1}


The answer is:

x22x+4x22x+1\frac{x^{2} - 2 x + 4}{x^{2} - 2 x + 1}

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
  x             /  1        x    \
----- + (x - 4)*|----- - --------|
x - 1           |x - 1          2|
                \        (x - 1) /
xx1+(x4)(x(x1)2+1x1)\frac{x}{x - 1} + \left(x - 4\right) \left(- \frac{x}{\left(x - 1\right)^{2}} + \frac{1}{x - 1}\right)
The second derivative [src]
  /             /       x   \         \
  |             |-1 + ------|*(-4 + x)|
  |      x      \     -1 + x/         |
2*|1 - ------ + ----------------------|
  \    -1 + x           -1 + x        /
---------------------------------------
                 -1 + x                
2(xx1+(x4)(xx11)x1+1)x1\frac{2 \left(- \frac{x}{x - 1} + \frac{\left(x - 4\right) \left(\frac{x}{x - 1} - 1\right)}{x - 1} + 1\right)}{x - 1}
The third derivative [src]
  /    -4 + x\ /       x   \
6*|1 - ------|*|-1 + ------|
  \    -1 + x/ \     -1 + x/
----------------------------
                 2          
         (-1 + x)           
6(xx11)(x4x1+1)(x1)2\frac{6 \left(\frac{x}{x - 1} - 1\right) \left(- \frac{x - 4}{x - 1} + 1\right)}{\left(x - 1\right)^{2}}
The graph
Derivative of y=x/(x-1)*(x-4)