Mister Exam

Other calculators


x/sqrt(x^2-1)

Derivative of x/sqrt(x^2-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     x     
-----------
   ________
  /  2     
\/  x  - 1 
xx21\frac{x}{\sqrt{x^{2} - 1}}
d /     x     \
--|-----------|
dx|   ________|
  |  /  2     |
  \\/  x  - 1 /
ddxxx21\frac{d}{d x} \frac{x}{\sqrt{x^{2} - 1}}
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=xf{\left(x \right)} = x and g(x)=x21g{\left(x \right)} = \sqrt{x^{2} - 1}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=x21u = x^{2} - 1.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddx(x21)\frac{d}{d x} \left(x^{2} - 1\right):

      1. Differentiate x21x^{2} - 1 term by term:

        1. The derivative of the constant 1-1 is zero.

        2. Apply the power rule: x2x^{2} goes to 2x2 x

        The result is: 2x2 x

      The result of the chain rule is:

      xx21\frac{x}{\sqrt{x^{2} - 1}}

    Now plug in to the quotient rule:

    x2x21+x21x21\frac{- \frac{x^{2}}{\sqrt{x^{2} - 1}} + \sqrt{x^{2} - 1}}{x^{2} - 1}

  2. Now simplify:

    1(x21)32- \frac{1}{\left(x^{2} - 1\right)^{\frac{3}{2}}}


The answer is:

1(x21)32- \frac{1}{\left(x^{2} - 1\right)^{\frac{3}{2}}}

The graph
02468-8-6-4-2-1010-1010
The first derivative [src]
                    2    
     1             x     
----------- - -----------
   ________           3/2
  /  2        / 2    \   
\/  x  - 1    \x  - 1/   
x2(x21)32+1x21- \frac{x^{2}}{\left(x^{2} - 1\right)^{\frac{3}{2}}} + \frac{1}{\sqrt{x^{2} - 1}}
The second derivative [src]
  /          2 \
  |       3*x  |
x*|-3 + -------|
  |           2|
  \     -1 + x /
----------------
           3/2  
  /      2\     
  \-1 + x /     
x(3x2x213)(x21)32\frac{x \left(\frac{3 x^{2}}{x^{2} - 1} - 3\right)}{\left(x^{2} - 1\right)^{\frac{3}{2}}}
The third derivative [src]
  /                  /          2 \\
  |                2 |       5*x  ||
  |               x *|-3 + -------||
  |          2       |           2||
  |       3*x        \     -1 + x /|
3*|-1 + ------- - -----------------|
  |           2              2     |
  \     -1 + x         -1 + x      /
------------------------------------
                     3/2            
            /      2\               
            \-1 + x /               
3(x2(5x2x213)x21+3x2x211)(x21)32\frac{3 \left(- \frac{x^{2} \cdot \left(\frac{5 x^{2}}{x^{2} - 1} - 3\right)}{x^{2} - 1} + \frac{3 x^{2}}{x^{2} - 1} - 1\right)}{\left(x^{2} - 1\right)^{\frac{3}{2}}}
The graph
Derivative of x/sqrt(x^2-1)