Mister Exam

Other calculators

Derivative of sqrt(r^2-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   _________
  /  2    2 
\/  r  - x  
$$\sqrt{r^{2} - x^{2}}$$
  /   _________\
d |  /  2    2 |
--\\/  r  - x  /
dx              
$$\frac{\partial}{\partial x} \sqrt{r^{2} - x^{2}}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:


The answer is:

The first derivative [src]
    -x      
------------
   _________
  /  2    2 
\/  r  - x  
$$- \frac{x}{\sqrt{r^{2} - x^{2}}}$$
The second derivative [src]
 /        2  \ 
 |       x   | 
-|1 + -------| 
 |     2    2| 
 \    r  - x / 
---------------
     _________ 
    /  2    2  
  \/  r  - x   
$$- \frac{\frac{x^{2}}{r^{2} - x^{2}} + 1}{\sqrt{r^{2} - x^{2}}}$$
The third derivative [src]
     /        2  \
     |       x   |
-3*x*|1 + -------|
     |     2    2|
     \    r  - x /
------------------
            3/2   
   / 2    2\      
   \r  - x /      
$$- \frac{3 x \left(\frac{x^{2}}{r^{2} - x^{2}} + 1\right)}{\left(r^{2} - x^{2}\right)^{\frac{3}{2}}}$$