Mister Exam

Other calculators


sinx/(3-2cos(x))

Derivative of sinx/(3-2cos(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   sin(x)   
------------
3 - 2*cos(x)
sin(x)2cos(x)+3\frac{\sin{\left(x \right)}}{- 2 \cos{\left(x \right)} + 3}
d /   sin(x)   \
--|------------|
dx\3 - 2*cos(x)/
ddxsin(x)2cos(x)+3\frac{d}{d x} \frac{\sin{\left(x \right)}}{- 2 \cos{\left(x \right)} + 3}
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)} and g(x)=32cos(x)g{\left(x \right)} = 3 - 2 \cos{\left(x \right)}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. The derivative of sine is cosine:

      ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate 32cos(x)3 - 2 \cos{\left(x \right)} term by term:

      1. The derivative of the constant 33 is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of cosine is negative sine:

          ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

        So, the result is: 2sin(x)2 \sin{\left(x \right)}

      The result is: 2sin(x)2 \sin{\left(x \right)}

    Now plug in to the quotient rule:

    (32cos(x))cos(x)2sin2(x)(32cos(x))2\frac{\left(3 - 2 \cos{\left(x \right)}\right) \cos{\left(x \right)} - 2 \sin^{2}{\left(x \right)}}{\left(3 - 2 \cos{\left(x \right)}\right)^{2}}

  2. Now simplify:

    3cos(x)2(2cos(x)3)2\frac{3 \cos{\left(x \right)} - 2}{\left(2 \cos{\left(x \right)} - 3\right)^{2}}


The answer is:

3cos(x)2(2cos(x)3)2\frac{3 \cos{\left(x \right)} - 2}{\left(2 \cos{\left(x \right)} - 3\right)^{2}}

The graph
02468-8-6-4-2-10102-2
The first derivative [src]
                       2      
   cos(x)         2*sin (x)   
------------ - ---------------
3 - 2*cos(x)                 2
               (3 - 2*cos(x)) 
cos(x)2cos(x)+32sin2(x)(2cos(x)+3)2\frac{\cos{\left(x \right)}}{- 2 \cos{\left(x \right)} + 3} - \frac{2 \sin^{2}{\left(x \right)}}{\left(- 2 \cos{\left(x \right)} + 3\right)^{2}}
The second derivative [src]
/                      /       2              \\       
|                      |  4*sin (x)           ||       
|                    2*|------------- + cos(x)||       
|       4*cos(x)       \-3 + 2*cos(x)         /|       
|1 - ------------- - --------------------------|*sin(x)
\    -3 + 2*cos(x)         -3 + 2*cos(x)       /       
-------------------------------------------------------
                     -3 + 2*cos(x)                     
(2(cos(x)+4sin2(x)2cos(x)3)2cos(x)3+14cos(x)2cos(x)3)sin(x)2cos(x)3\frac{\left(- \frac{2 \left(\cos{\left(x \right)} + \frac{4 \sin^{2}{\left(x \right)}}{2 \cos{\left(x \right)} - 3}\right)}{2 \cos{\left(x \right)} - 3} + 1 - \frac{4 \cos{\left(x \right)}}{2 \cos{\left(x \right)} - 3}\right) \sin{\left(x \right)}}{2 \cos{\left(x \right)} - 3}
The third derivative [src]
                                                              /                              2      \         
                  /       2              \               2    |       12*cos(x)        24*sin (x)   |         
                  |  4*sin (x)           |          2*sin (x)*|-1 + ------------- + ----------------|         
       2        6*|------------- + cos(x)|*cos(x)             |     -3 + 2*cos(x)                  2|         
  6*sin (x)       \-3 + 2*cos(x)         /                    \                     (-3 + 2*cos(x)) /         
------------- - --------------------------------- - ------------------------------------------------- + cos(x)
-3 + 2*cos(x)             -3 + 2*cos(x)                               -3 + 2*cos(x)                           
--------------------------------------------------------------------------------------------------------------
                                                -3 + 2*cos(x)                                                 
2(1+12cos(x)2cos(x)3+24sin2(x)(2cos(x)3)2)sin2(x)2cos(x)36(cos(x)+4sin2(x)2cos(x)3)cos(x)2cos(x)3+cos(x)+6sin2(x)2cos(x)32cos(x)3\frac{- \frac{2 \left(-1 + \frac{12 \cos{\left(x \right)}}{2 \cos{\left(x \right)} - 3} + \frac{24 \sin^{2}{\left(x \right)}}{\left(2 \cos{\left(x \right)} - 3\right)^{2}}\right) \sin^{2}{\left(x \right)}}{2 \cos{\left(x \right)} - 3} - \frac{6 \left(\cos{\left(x \right)} + \frac{4 \sin^{2}{\left(x \right)}}{2 \cos{\left(x \right)} - 3}\right) \cos{\left(x \right)}}{2 \cos{\left(x \right)} - 3} + \cos{\left(x \right)} + \frac{6 \sin^{2}{\left(x \right)}}{2 \cos{\left(x \right)} - 3}}{2 \cos{\left(x \right)} - 3}
The graph
Derivative of sinx/(3-2cos(x))