sin(x) ------------ 3 - 2*cos(x)
d / sin(x) \ --|------------| dx\3 - 2*cos(x)/
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of cosine is negative sine:
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2 cos(x) 2*sin (x) ------------ - --------------- 3 - 2*cos(x) 2 (3 - 2*cos(x))
/ / 2 \\ | | 4*sin (x) || | 2*|------------- + cos(x)|| | 4*cos(x) \-3 + 2*cos(x) /| |1 - ------------- - --------------------------|*sin(x) \ -3 + 2*cos(x) -3 + 2*cos(x) / ------------------------------------------------------- -3 + 2*cos(x)
/ 2 \ / 2 \ 2 | 12*cos(x) 24*sin (x) | | 4*sin (x) | 2*sin (x)*|-1 + ------------- + ----------------| 2 6*|------------- + cos(x)|*cos(x) | -3 + 2*cos(x) 2| 6*sin (x) \-3 + 2*cos(x) / \ (-3 + 2*cos(x)) / ------------- - --------------------------------- - ------------------------------------------------- + cos(x) -3 + 2*cos(x) -3 + 2*cos(x) -3 + 2*cos(x) -------------------------------------------------------------------------------------------------------------- -3 + 2*cos(x)