Mister Exam

Other calculators


sinx/(3-2cos(x))

Derivative of sinx/(3-2cos(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   sin(x)   
------------
3 - 2*cos(x)
$$\frac{\sin{\left(x \right)}}{- 2 \cos{\left(x \right)} + 3}$$
d /   sin(x)   \
--|------------|
dx\3 - 2*cos(x)/
$$\frac{d}{d x} \frac{\sin{\left(x \right)}}{- 2 \cos{\left(x \right)} + 3}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of sine is cosine:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of cosine is negative sine:

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                       2      
   cos(x)         2*sin (x)   
------------ - ---------------
3 - 2*cos(x)                 2
               (3 - 2*cos(x)) 
$$\frac{\cos{\left(x \right)}}{- 2 \cos{\left(x \right)} + 3} - \frac{2 \sin^{2}{\left(x \right)}}{\left(- 2 \cos{\left(x \right)} + 3\right)^{2}}$$
The second derivative [src]
/                      /       2              \\       
|                      |  4*sin (x)           ||       
|                    2*|------------- + cos(x)||       
|       4*cos(x)       \-3 + 2*cos(x)         /|       
|1 - ------------- - --------------------------|*sin(x)
\    -3 + 2*cos(x)         -3 + 2*cos(x)       /       
-------------------------------------------------------
                     -3 + 2*cos(x)                     
$$\frac{\left(- \frac{2 \left(\cos{\left(x \right)} + \frac{4 \sin^{2}{\left(x \right)}}{2 \cos{\left(x \right)} - 3}\right)}{2 \cos{\left(x \right)} - 3} + 1 - \frac{4 \cos{\left(x \right)}}{2 \cos{\left(x \right)} - 3}\right) \sin{\left(x \right)}}{2 \cos{\left(x \right)} - 3}$$
The third derivative [src]
                                                              /                              2      \         
                  /       2              \               2    |       12*cos(x)        24*sin (x)   |         
                  |  4*sin (x)           |          2*sin (x)*|-1 + ------------- + ----------------|         
       2        6*|------------- + cos(x)|*cos(x)             |     -3 + 2*cos(x)                  2|         
  6*sin (x)       \-3 + 2*cos(x)         /                    \                     (-3 + 2*cos(x)) /         
------------- - --------------------------------- - ------------------------------------------------- + cos(x)
-3 + 2*cos(x)             -3 + 2*cos(x)                               -3 + 2*cos(x)                           
--------------------------------------------------------------------------------------------------------------
                                                -3 + 2*cos(x)                                                 
$$\frac{- \frac{2 \left(-1 + \frac{12 \cos{\left(x \right)}}{2 \cos{\left(x \right)} - 3} + \frac{24 \sin^{2}{\left(x \right)}}{\left(2 \cos{\left(x \right)} - 3\right)^{2}}\right) \sin^{2}{\left(x \right)}}{2 \cos{\left(x \right)} - 3} - \frac{6 \left(\cos{\left(x \right)} + \frac{4 \sin^{2}{\left(x \right)}}{2 \cos{\left(x \right)} - 3}\right) \cos{\left(x \right)}}{2 \cos{\left(x \right)} - 3} + \cos{\left(x \right)} + \frac{6 \sin^{2}{\left(x \right)}}{2 \cos{\left(x \right)} - 3}}{2 \cos{\left(x \right)} - 3}$$
The graph
Derivative of sinx/(3-2cos(x))