sin(x) ------------ 3 - 2*cos(x)
d / sin(x) \ --|------------| dx\3 - 2*cos(x)/
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of cosine is negative sine:
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2
cos(x) 2*sin (x)
------------ - ---------------
3 - 2*cos(x) 2
(3 - 2*cos(x))
/ / 2 \\
| | 4*sin (x) ||
| 2*|------------- + cos(x)||
| 4*cos(x) \-3 + 2*cos(x) /|
|1 - ------------- - --------------------------|*sin(x)
\ -3 + 2*cos(x) -3 + 2*cos(x) /
-------------------------------------------------------
-3 + 2*cos(x)
/ 2 \
/ 2 \ 2 | 12*cos(x) 24*sin (x) |
| 4*sin (x) | 2*sin (x)*|-1 + ------------- + ----------------|
2 6*|------------- + cos(x)|*cos(x) | -3 + 2*cos(x) 2|
6*sin (x) \-3 + 2*cos(x) / \ (-3 + 2*cos(x)) /
------------- - --------------------------------- - ------------------------------------------------- + cos(x)
-3 + 2*cos(x) -3 + 2*cos(x) -3 + 2*cos(x)
--------------------------------------------------------------------------------------------------------------
-3 + 2*cos(x)