Mister Exam

Derivative of xcos(pix)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x*cos(pi*x)
xcos(πx)x \cos{\left(\pi x \right)}
d              
--(x*cos(pi*x))
dx             
ddxxcos(πx)\frac{d}{d x} x \cos{\left(\pi x \right)}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    g(x)=cos(πx)g{\left(x \right)} = \cos{\left(\pi x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=πxu = \pi x.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddxπx\frac{d}{d x} \pi x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: π\pi

      The result of the chain rule is:

      πsin(πx)- \pi \sin{\left(\pi x \right)}

    The result is: πxsin(πx)+cos(πx)- \pi x \sin{\left(\pi x \right)} + \cos{\left(\pi x \right)}


The answer is:

πxsin(πx)+cos(πx)- \pi x \sin{\left(\pi x \right)} + \cos{\left(\pi x \right)}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
-pi*x*sin(pi*x) + cos(pi*x)
πxsin(πx)+cos(πx)- \pi x \sin{\left(\pi x \right)} + \cos{\left(\pi x \right)}
The second derivative [src]
-pi*(2*sin(pi*x) + pi*x*cos(pi*x))
π(πxcos(πx)+2sin(πx))- \pi \left(\pi x \cos{\left(\pi x \right)} + 2 \sin{\left(\pi x \right)}\right)
The third derivative [src]
  2                                
pi *(-3*cos(pi*x) + pi*x*sin(pi*x))
π2(πxsin(πx)3cos(πx))\pi^{2} \left(\pi x \sin{\left(\pi x \right)} - 3 \cos{\left(\pi x \right)}\right)
The graph
Derivative of xcos(pix)