Mister Exam

Derivative of 9cos^3xcospix

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     3             
9*cos (x)*cos(pi*x)
9cos3(x)cos(πx)9 \cos^{3}{\left(x \right)} \cos{\left(\pi x \right)}
(9*cos(x)^3)*cos(pi*x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=9cos3(x)f{\left(x \right)} = 9 \cos^{3}{\left(x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=cos(x)u = \cos{\left(x \right)}.

      2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

      3. Then, apply the chain rule. Multiply by ddxcos(x)\frac{d}{d x} \cos{\left(x \right)}:

        1. The derivative of cosine is negative sine:

          ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

        The result of the chain rule is:

        3sin(x)cos2(x)- 3 \sin{\left(x \right)} \cos^{2}{\left(x \right)}

      So, the result is: 27sin(x)cos2(x)- 27 \sin{\left(x \right)} \cos^{2}{\left(x \right)}

    g(x)=cos(πx)g{\left(x \right)} = \cos{\left(\pi x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=πxu = \pi x.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddxπx\frac{d}{d x} \pi x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: π\pi

      The result of the chain rule is:

      πsin(πx)- \pi \sin{\left(\pi x \right)}

    The result is: 27sin(x)cos2(x)cos(πx)9πsin(πx)cos3(x)- 27 \sin{\left(x \right)} \cos^{2}{\left(x \right)} \cos{\left(\pi x \right)} - 9 \pi \sin{\left(\pi x \right)} \cos^{3}{\left(x \right)}

  2. Now simplify:

    9(3sin(x)cos(πx)+πsin(πx)cos(x))cos2(x)- 9 \left(3 \sin{\left(x \right)} \cos{\left(\pi x \right)} + \pi \sin{\left(\pi x \right)} \cos{\left(x \right)}\right) \cos^{2}{\left(x \right)}


The answer is:

9(3sin(x)cos(πx)+πsin(πx)cos(x))cos2(x)- 9 \left(3 \sin{\left(x \right)} \cos{\left(\pi x \right)} + \pi \sin{\left(\pi x \right)} \cos{\left(x \right)}\right) \cos^{2}{\left(x \right)}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
        2                               3             
- 27*cos (x)*cos(pi*x)*sin(x) - 9*pi*cos (x)*sin(pi*x)
27sin(x)cos2(x)cos(πx)9πsin(πx)cos3(x)- 27 \sin{\left(x \right)} \cos^{2}{\left(x \right)} \cos{\left(\pi x \right)} - 9 \pi \sin{\left(\pi x \right)} \cos^{3}{\left(x \right)}
The second derivative [src]
  /  /     2           2   \               2    2                                            \       
9*\3*\- cos (x) + 2*sin (x)/*cos(pi*x) - pi *cos (x)*cos(pi*x) + 6*pi*cos(x)*sin(x)*sin(pi*x)/*cos(x)
9(3(2sin2(x)cos2(x))cos(πx)+6πsin(x)sin(πx)cos(x)π2cos2(x)cos(πx))cos(x)9 \left(3 \left(2 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \cos{\left(\pi x \right)} + 6 \pi \sin{\left(x \right)} \sin{\left(\pi x \right)} \cos{\left(x \right)} - \pi^{2} \cos^{2}{\left(x \right)} \cos{\left(\pi x \right)}\right) \cos{\left(x \right)}
The third derivative [src]
  /  3    3                  /       2           2   \                         /     2           2   \                        2    2                    \
9*\pi *cos (x)*sin(pi*x) - 3*\- 7*cos (x) + 2*sin (x)/*cos(pi*x)*sin(x) - 9*pi*\- cos (x) + 2*sin (x)/*cos(x)*sin(pi*x) + 9*pi *cos (x)*cos(pi*x)*sin(x)/
9(3(2sin2(x)7cos2(x))sin(x)cos(πx)9π(2sin2(x)cos2(x))sin(πx)cos(x)+9π2sin(x)cos2(x)cos(πx)+π3sin(πx)cos3(x))9 \left(- 3 \left(2 \sin^{2}{\left(x \right)} - 7 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos{\left(\pi x \right)} - 9 \pi \left(2 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \sin{\left(\pi x \right)} \cos{\left(x \right)} + 9 \pi^{2} \sin{\left(x \right)} \cos^{2}{\left(x \right)} \cos{\left(\pi x \right)} + \pi^{3} \sin{\left(\pi x \right)} \cos^{3}{\left(x \right)}\right)