Mister Exam

Derivative of 9cos^3xcospix

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     3             
9*cos (x)*cos(pi*x)
$$9 \cos^{3}{\left(x \right)} \cos{\left(\pi x \right)}$$
(9*cos(x)^3)*cos(pi*x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of cosine is negative sine:

        The result of the chain rule is:

      So, the result is:

    ; to find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
        2                               3             
- 27*cos (x)*cos(pi*x)*sin(x) - 9*pi*cos (x)*sin(pi*x)
$$- 27 \sin{\left(x \right)} \cos^{2}{\left(x \right)} \cos{\left(\pi x \right)} - 9 \pi \sin{\left(\pi x \right)} \cos^{3}{\left(x \right)}$$
The second derivative [src]
  /  /     2           2   \               2    2                                            \       
9*\3*\- cos (x) + 2*sin (x)/*cos(pi*x) - pi *cos (x)*cos(pi*x) + 6*pi*cos(x)*sin(x)*sin(pi*x)/*cos(x)
$$9 \left(3 \left(2 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \cos{\left(\pi x \right)} + 6 \pi \sin{\left(x \right)} \sin{\left(\pi x \right)} \cos{\left(x \right)} - \pi^{2} \cos^{2}{\left(x \right)} \cos{\left(\pi x \right)}\right) \cos{\left(x \right)}$$
The third derivative [src]
  /  3    3                  /       2           2   \                         /     2           2   \                        2    2                    \
9*\pi *cos (x)*sin(pi*x) - 3*\- 7*cos (x) + 2*sin (x)/*cos(pi*x)*sin(x) - 9*pi*\- cos (x) + 2*sin (x)/*cos(x)*sin(pi*x) + 9*pi *cos (x)*cos(pi*x)*sin(x)/
$$9 \left(- 3 \left(2 \sin^{2}{\left(x \right)} - 7 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos{\left(\pi x \right)} - 9 \pi \left(2 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \sin{\left(\pi x \right)} \cos{\left(x \right)} + 9 \pi^{2} \sin{\left(x \right)} \cos^{2}{\left(x \right)} \cos{\left(\pi x \right)} + \pi^{3} \sin{\left(\pi x \right)} \cos^{3}{\left(x \right)}\right)$$