Mister Exam

Other calculators

Derivative of ((5-x)*cos((pi*x)/2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
           /pi*x\
(5 - x)*cos|----|
           \ 2  /
$$\left(5 - x\right) \cos{\left(\frac{\pi x}{2} \right)}$$
(5 - x)*cos((pi*x)/2)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    ; to find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        So, the result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                            /pi*x\
              pi*(5 - x)*sin|----|
     /pi*x\                 \ 2  /
- cos|----| - --------------------
     \ 2  /            2          
$$- \frac{\pi \left(5 - x\right) \sin{\left(\frac{\pi x}{2} \right)}}{2} - \cos{\left(\frac{\pi x}{2} \right)}$$
The second derivative [src]
   /               /pi*x\            \
   |pi*(-5 + x)*cos|----|            |
   |               \ 2  /      /pi*x\|
pi*|--------------------- + sin|----||
   \          4                \ 2  //
$$\pi \left(\frac{\pi \left(x - 5\right) \cos{\left(\frac{\pi x}{2} \right)}}{4} + \sin{\left(\frac{\pi x}{2} \right)}\right)$$
The third derivative [src]
  2 /     /pi*x\                  /pi*x\\
pi *|6*cos|----| - pi*(-5 + x)*sin|----||
    \     \ 2  /                  \ 2  //
-----------------------------------------
                    8                    
$$\frac{\pi^{2} \left(- \pi \left(x - 5\right) \sin{\left(\frac{\pi x}{2} \right)} + 6 \cos{\left(\frac{\pi x}{2} \right)}\right)}{8}$$