Mister Exam

Other calculators

Derivative of 2^(tan4*x)*cos(lgx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 tan(4*x)            
2        *cos(log(x))
$$2^{\tan{\left(4 x \right)}} \cos{\left(\log{\left(x \right)} \right)}$$
2^tan(4*x)*cos(log(x))
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Then, apply the chain rule. Multiply by :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of is .

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   tan(4*x)                                                             
  2        *sin(log(x))    tan(4*x) /         2     \                   
- --------------------- + 2        *\4 + 4*tan (4*x)/*cos(log(x))*log(2)
            x                                                           
$$2^{\tan{\left(4 x \right)}} \left(4 \tan^{2}{\left(4 x \right)} + 4\right) \log{\left(2 \right)} \cos{\left(\log{\left(x \right)} \right)} - \frac{2^{\tan{\left(4 x \right)}} \sin{\left(\log{\left(x \right)} \right)}}{x}$$
The second derivative [src]
          /                               /       2     \                                                                                                 \
 tan(4*x) |-cos(log(x)) + sin(log(x))   8*\1 + tan (4*x)/*log(2)*sin(log(x))      /       2     \ /             /       2     \       \                   |
2        *|-------------------------- - ------------------------------------ + 16*\1 + tan (4*x)/*\2*tan(4*x) + \1 + tan (4*x)/*log(2)/*cos(log(x))*log(2)|
          |             2                                x                                                                                                |
          \            x                                                                                                                                  /
$$2^{\tan{\left(4 x \right)}} \left(16 \left(\left(\tan^{2}{\left(4 x \right)} + 1\right) \log{\left(2 \right)} + 2 \tan{\left(4 x \right)}\right) \left(\tan^{2}{\left(4 x \right)} + 1\right) \log{\left(2 \right)} \cos{\left(\log{\left(x \right)} \right)} - \frac{8 \left(\tan^{2}{\left(4 x \right)} + 1\right) \log{\left(2 \right)} \sin{\left(\log{\left(x \right)} \right)}}{x} + \frac{\sin{\left(\log{\left(x \right)} \right)} - \cos{\left(\log{\left(x \right)} \right)}}{x^{2}}\right)$$
The third derivative [src]
          /                                    /       2     \                                                          /                                 2                                            \                         /       2     \ /             /       2     \       \                   \
 tan(4*x) |  -3*cos(log(x)) + sin(log(x))   12*\1 + tan (4*x)/*(-cos(log(x)) + sin(log(x)))*log(2)      /       2     \ |         2        /       2     \     2        /       2     \                |                      48*\1 + tan (4*x)/*\2*tan(4*x) + \1 + tan (4*x)/*log(2)/*log(2)*sin(log(x))|
2        *|- ---------------------------- + ------------------------------------------------------ + 64*\1 + tan (4*x)/*\2 + 6*tan (4*x) + \1 + tan (4*x)/ *log (2) + 6*\1 + tan (4*x)/*log(2)*tan(4*x)/*cos(log(x))*log(2) - ---------------------------------------------------------------------------|
          |                3                                           2                                                                                                                                                                                           x                                     |
          \               x                                           x                                                                                                                                                                                                                                  /
$$2^{\tan{\left(4 x \right)}} \left(64 \left(\tan^{2}{\left(4 x \right)} + 1\right) \left(\left(\tan^{2}{\left(4 x \right)} + 1\right)^{2} \log{\left(2 \right)}^{2} + 6 \left(\tan^{2}{\left(4 x \right)} + 1\right) \log{\left(2 \right)} \tan{\left(4 x \right)} + 6 \tan^{2}{\left(4 x \right)} + 2\right) \log{\left(2 \right)} \cos{\left(\log{\left(x \right)} \right)} - \frac{48 \left(\left(\tan^{2}{\left(4 x \right)} + 1\right) \log{\left(2 \right)} + 2 \tan{\left(4 x \right)}\right) \left(\tan^{2}{\left(4 x \right)} + 1\right) \log{\left(2 \right)} \sin{\left(\log{\left(x \right)} \right)}}{x} + \frac{12 \left(\sin{\left(\log{\left(x \right)} \right)} - \cos{\left(\log{\left(x \right)} \right)}\right) \left(\tan^{2}{\left(4 x \right)} + 1\right) \log{\left(2 \right)}}{x^{2}} - \frac{\sin{\left(\log{\left(x \right)} \right)} - 3 \cos{\left(\log{\left(x \right)} \right)}}{x^{3}}\right)$$