tan(4*x) 2 *cos(log(x))
2^tan(4*x)*cos(log(x))
Apply the product rule:
; to find :
Let .
Then, apply the chain rule. Multiply by :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
Now plug in to the quotient rule:
The result of the chain rule is:
; to find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of is .
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
tan(4*x) 2 *sin(log(x)) tan(4*x) / 2 \ - --------------------- + 2 *\4 + 4*tan (4*x)/*cos(log(x))*log(2) x
/ / 2 \ \ tan(4*x) |-cos(log(x)) + sin(log(x)) 8*\1 + tan (4*x)/*log(2)*sin(log(x)) / 2 \ / / 2 \ \ | 2 *|-------------------------- - ------------------------------------ + 16*\1 + tan (4*x)/*\2*tan(4*x) + \1 + tan (4*x)/*log(2)/*cos(log(x))*log(2)| | 2 x | \ x /
/ / 2 \ / 2 \ / 2 \ / / 2 \ \ \ tan(4*x) | -3*cos(log(x)) + sin(log(x)) 12*\1 + tan (4*x)/*(-cos(log(x)) + sin(log(x)))*log(2) / 2 \ | 2 / 2 \ 2 / 2 \ | 48*\1 + tan (4*x)/*\2*tan(4*x) + \1 + tan (4*x)/*log(2)/*log(2)*sin(log(x))| 2 *|- ---------------------------- + ------------------------------------------------------ + 64*\1 + tan (4*x)/*\2 + 6*tan (4*x) + \1 + tan (4*x)/ *log (2) + 6*\1 + tan (4*x)/*log(2)*tan(4*x)/*cos(log(x))*log(2) - ---------------------------------------------------------------------------| | 3 2 x | \ x x /